
Chris Kimble
January 2008

System Design Methodologies

Back to Basics: Programs and Software

Chris Kimble
January 2008

Overview

• Some philosophy (or is it mathematics?)
– Complete and Closed Systems, Equivalence and

Descriptions

• Some history (or is it mathematics again?)
– Programs and Formal Languages
– Software and Formal Languages

• Some conclusions (i.e. the basics)
– Validation and Verification
– The difference between Programs and Software

Chris Kimble
January 2008

A puzzle

• A proposition is an idea with which the label “true”
or “false” can be associated.

• Consider the following proposition:
– Fido is a dog
– Dogs are animals
– Therefore, Fido is an animal

• Under what conditions it this proposition true?

Chris Kimble
January 2008

Answer

FalseFalseFalseTrueFido is an animal

FalseTrueFalseTrueAll dogs are animals

FalseFalseTrueTrueFido is always a dog

4321

Chris Kimble
January 2008

Closure

• In set theory, a description is said to be closed if
the result of the operation on any member(s) of the
set is also a member of the set

• Closed systems are sometimes called self-
describing systems because they not only
describe a truth, but also describe what truth is
and how it can be recognised.

Chris Kimble
January 2008

A Closed Description

A CB

a dcb

Chris Kimble
January 2008

An Open Description

A CB

a dcb e f

Chris Kimble
January 2008

Completeness

• In logic, a description is said to be complete if all of
its propositions can be derived only from the
axioms of the system.

• Complete systems allow the truth of any statement
to be verified by recourse to the basic axioms of
the system

Chris Kimble
January 2008

A Complete Description

A CB

a dcb

Chris Kimble
January 2008

An Incomplete Description

A CB

a dcb e f

Chris Kimble
January 2008

Putting them all together

Incomplete and OpenIncomplete and Closed

Complete and OpenComplete and Closed

Chris Kimble
January 2008

Complete and closed

• Both the scope of the system and all of the
possible behaviours that could occur inside the
system are known.

• If any new behaviour is found, or if the boundaries
of the system change, the truth of the whole
description becomes invalid.

– If we can demonstrate that the propositions “Fido is a
dog” and “dogs are animals” are both closed and
complete then it follows that the two terms are equivalent,
i.e. you could substitute “animal” for “Fido” in any
proposition and it would still be true.

Chris Kimble
January 2008

Complete and open

• The behaviour inside the system is fixed but the
boundaries of the system are not.

• The boundaries of the system are open to change,
but if any new behaviours are discovered, the truth
of the whole description becomes invalid.

– For example, if “Fido is a dog” were complete, but “dogs
are animals” was open (e.g because there are other
animals than dogs) then the terms “animal” for “Fido” are
no longer equivalent. Consequently, if you wanted to
build something for a Camel, you could not use a dog as
a substitute.

Chris Kimble
January 2008

Incomplete and closed

• The boundaries of the system are fixed, but the
behaviour inside the boundaries is not fully known.

• New behaviours can be found in the system, but if
the boundaries of the system change, the truth of
the whole description becomes invalid.

– For example, if “Fido is a dog” were incomplete (e.g.
because, when there is a full moon, Fido becomes a Hell
Hound) but “dogs are animals” is closed then the terms
“animal” for “Fido” are not equivalent because we don’t
know if a “Hell Hound” is an animal.

Chris Kimble
January 2008

Incomplete and open

• Neither the scope of the system, nor all of the
possible behaviours that could occur inside the
system are known.

• Both the boundaries of the system and the
behaviour of system can change without
challenging the validity of the description.

– Clearly, if we cannot demonstrate that the propositions
“Fido is a dog” and “dogs are animals” are either closed
or complete then the two terms cannot possibly be
equivalent.

Chris Kimble
January 2008

Programs

• Program - “a sequence of operations that a
machine can be set to perform automatically”

• ‘Programs’ are not new
– Punch Cards

• Jacquard Loom (programmable weaving machine) - 1804

– The difference engine
• Babbage / Lovelace (a design for a calculating engine) -

1833

Chris Kimble
January 2008

Early Computers (Manchester mark 1, 1948)

Chris Kimble
January 2008

Early Computers

• Early computers required the operator to change
its physical layout of the machine in order to
change the program

• “Reprogramming” the computer was a long drawn
out a manual process:
– paper notes
– flow charts
– detailed engineering designs
– re-wiring
– testing
– …

Chris Kimble
January 2008

Re-programming the Mark 1

Chris Kimble
January 2008

Programs

• The von Neumann architecture or von Neumann
machine
– a design for a computer that uses a single storage

structure to hold both instructions and data
– Now a language is used to describe the operations to the

computer will carry out
– There is no need to change the physical layout of the

machine
– Computers become more flexible …

Chris Kimble
January 2008

Early computers (Ferranti Mark 1, 1951)

Chris Kimble
January 2008

Programs

• Von Neumann did not use natural language but
borrowed from the mathematical theory developed
by Alan Turing, Emile Post, Alonzo Church in
1936.

• The languages proposed by these new theories
relied heavily on formal logic, consequently the
languages themselves became known as formal
languages.

Chris Kimble
January 2008

Formal Languages

• Contain a finite number of symbols and rules for
combining symbols

• Atomic symbols can not be decomposed into other
symbols and form the alphabet of the language

• Non-atomic symbols are created by combining
atomic symbols

• Non-atomic symbols must have a set of rules that
describe precisely how they are created

• Atomic symbols, non-atomic symbols and the rules
combining them are the grammar of the language

Chris Kimble
January 2008

Formal Languages

• Some basic assumptions of descriptions using
formal languages:

– The language is complete, i.e. no new symbols or
operations can be introduced

– The system they describe is closed, i.e. the system can
not behave in such a way that the behaviour exhibited
can not be described by the language

Chris Kimble
January 2008

Equivalence and Description

For complete and close systems:
– Given a written description (program), it is possible to

work out exactly what sequence of actions the machine
will produce

– Given a sequence of actions by the machine, it is
possible to work out exactly what the written description
(program) must have been

• Equivalence
– The actions of the machine and the description are

equivalent (actions ≡ instructions)

Chris Kimble
January 2008

Exercise

• This is a description of a
procedure to find the
highest factor of a number

• It was written on 18 June
1948 and run on the
Manchester Mark 1 on 21
June 1948

• Is this a program?

Chris Kimble
January 2008

Software
• Before the 1960s separate notions of ‘programs’

and ‘software’ did not really exist, but as computer
use became more widespread the need for
separate terms became apparent

– In 1962 IBM launched the
System/360 (a family of six
computers with up to 40
compatible peripherals)

– Orders for the system
reached 1,000 per month
within two years

Chris Kimble
January 2008

Software

• A mismatch between the requirements of the
machine and the needs of the business
– Example: a payroll system for a business

Machine
Sort the output by employee
identity code, following the
physical layout of the files storing
the payroll data to minimise the
time spent moving data to and
from the files

Business
Sort the output by employee
name, following the way the
accounts departments processes
are arranged to minimise
disruption to the smooth running
of the business

Chris Kimble
January 2008

Software

• There can be a mismatch between the needs of
the machine and the needs of the business

• The actions of the machine and the instructions
are no longer equivalent

• Formal languages are ill-suited to describing
sensible and long established business rules

• “Something else” was needed; that something else
began to be called “Software”

Chris Kimble
January 2008

Software

• Some definitions:
– “… the printed materials supplied by a computer

manufacturer to its customers” (1972)

– “Computer programs, procedures, rules and any
associated documentation concerned with the operation
of a data processing system.” (1982)

– “ ... those components of a computer system that are
intangible rather than physical” (1996)

Chris Kimble
January 2008

Exercise

• This is a description of a
procedure to find the
highest factor of a number

• It was written on 18 June
1948 and run on the
Manchester Mark 1 on 21
June 1948

• Is this software?

Chris Kimble
January 2008

Software and programs
• The influence of programs on software

– Program design methods were (and still are) developed
before software design methods

• Structured code led to structured design methods, object-
oriented languages led to object-oriented design methods

– Software design must lead to software implementation (i.e.
a program)

• So called “seamless development” (i.e. applying the same
ideas to both software design and program design) has some
obvious attractions

– History and expediency can lead to the assumption that
program design methods are always “right”

• Struggling to make software descriptions fit into the confines
of formal languages is sometimes promoted as a virtue

Chris Kimble
January 2008

Validation and Verification

• Validation and verification address the problem of
demonstrating the suitability of a software
description

– Validation: are we building the right product?
Validation is concerned with demonstrating that the
software description is based on the right assumptions

– Verification: are we building the product right?
Verification is concerned with demonstrating the internal
consistency of the software description

Chris Kimble
January 2008

Validation and Verification

• Closed systems are self defining and nothing new
can be introduced
– Software designers test the assumption of closure

through validation
• Does the design correspond to the requirements as

specified by the customer?
– If a design is valid then requirement statements can be

composed and decomposed without introducing errors
– This allows the designer to (a) reduce one large problem

into several smaller problems (b) structure those
problems in such way that they are capable of being
described in a formal language

Chris Kimble
January 2008

Validation and Verification

• Complete descriptions mean that any part of a
description can be traced directly to an axiom
– Software designers test the assumption of completeness

through verification
• Is the design correct in terms of the requirements

established at the beginning of the activity?
– If verified a designer can claim that the relationship

between the description and the thing being described is
completely and unambiguously defined

– This allows the designer to ignore differences between
conceptual descriptions and the thing it describes within
the scope of the system

Chris Kimble
January 2008

Validation and Verification

Customer

Designer

Software

Verification
(complete)

Validation
(closed)

Chris Kimble
January 2008

Closed and Complete Descriptions

• Closed and complete descriptions mean that a
designer can claim the description and the thing
being described are equivalent (i.e. they are
isomorphic)

• This allows the designer to treat the descriptions
and things they describe as being interchangeable

• Because of the unique environment of programs,
program designers can do this (at least in theory),
but software designers (at least in practice) never
can

Chris Kimble
January 2008

Exercise

• This is a description of a
procedure to find the
highest factor of a number

• It was written on 18 June
1948 and run on the
Manchester Mark 1 on 21
June 1948

• What is the difference
between software and
programs?

Chris Kimble
January 2008

Software and Programs

The problem:
• Program design methods are totally bounded by

the completeness and closure assumptions of
formal languages.

• Software design methods are only partially bound
by the completeness and closure assumptions of
formal languages.

• Software designers must go someway towards
finding a complete and closed description;
otherwise, the program designers cannot design
the programs

Chris Kimble
January 2008

Software and Programs

• Software must describe something of the human
communities that design, use and form the
environment for the programs.

• But some difficulties for software designers are:
– Where do the boundaries of these communities lie?
– What is the relationship between the communities and

the computers attached to them?
– How can we form closed or complete descriptions under

these conditions?

Chris Kimble
January 2008

Software and Programs

• Program descriptions are special cases of the
software descriptions

• Software descriptions are special cases of the full
complexity of the real relationships and associated
communities

• Thus:
– Software is a description of a special case of the

relationships among human communities, the
environment of those communities, and machines
associated with them.

• By assuming that complete or closed descriptions
exist, software design methods may fail to create
an adequate description of reality.

