
Chris Kimble
January 2008

Managing Change and Complexity

The reality of software development

Chris Kimble
January 2008

Overview

• Some more Philosophy
– Reality, representations and descriptions

• Some more history
– Managing complexity
– Managing change

• Some more conclusions
– A preview of what is to come
– An introduction to systems development methodologies

Chris Kimble
January 2008

Review

Chris Kimble
January 2008

Review
Last week …
• Philosophy

– Descriptions of complete and closed systems
– Notions of equivalence

• Programs and software
– Programs

• A description of the sequence of operations a machine can
perform automatically

• Closed and complete
– Software

• A description of the relationships between human
communities, their environment and the machines
associated with them

• Almost never closed and complete

Chris Kimble
January 2008

More Philosophy

• Previously we used the term “description” but what
does this mean and what is being described?

• To answer this we need to look at three important
concepts: reality, representations and descriptions

• As a starting point we will, arbitrarily, define these
three concepts by reference to the Oxford English
dictionary (Oxford University Press, 2nd edition,
1989).

Chris Kimble
January 2008

Reality

• Reality is “... that which
underlies and is the truth of
appearances or
phenomena.” (OED)

• It is 'unperceived reality':
what actually exists, rather
than what is perceived by
an individual.

• Reality is “out there” and
exists whether we know
about it or not.

Chris Kimble
January 2008

Representation

• A representation is "... the
operation of the mind in
forming a clear image or
concept.” (OED)

• It is an internal 'perceived
reality': the mental model
an individual uses to
comprehend reality.

• A representation only
exists in the mind of the
individual and can not be
shared directly.

Chris Kimble
January 2008

Description

• A description is "... a
statement which describes,
sets forth, or portrays'‘. (OED)

• It is an externalisation of an
individual's internal model
of reality made in order to
communicate it to others.

• A description exists
independently of an
individual and can be
shared between a number
of individuals.

Chris Kimble
January 2008

Putting them all together

• The representation is
created as the result of the
reception of stimuli from
reality.

• We refer to this relationship
as information.

• In philosophy, the
properties of the
information relationship is
the concern of Ontology.

• The description is
knowingly created in order
to communicate their
thoughts to others.

• We refer to this relationship
as knowledge.

• In philosophy, the
properties of the knowledge
relationship is the concern
of Epistemology.

Information Knowledge

Chris Kimble
January 2008

More history

• 1950’s
– High level languages are still new and poorly understood

but progress is being made
– Remaining task is how to characterise the problem the

computer needs to solve

• 1960’s
– Too many problems characterising the user domain,

solve them one at a time
– Develop an ad hoc approach

Chris Kimble
January 2008

Some history

• mid 1970’s
– Growing computer use leads to increasing complex

applications, a problem that the ad hoc the approach can
no longer deal with

– Look for ways to break down tasks and take a structured
approach

• 1990’s
– Growing pace of change means that structured

approaches can no longer keep up
– Look for hierarchies and take an object oriented

approach

Chris Kimble
January 2008

Very early languages

• FORTRAN I (FORmula TRANslator) was first
developed as a scientific language in 1957. It was
designed for accuracy and could perform a single
repetitive task using a simple instruction set and
loops
– Designed to run on one machine: The IBM 704 EDPM

(Electronic Data Processing Machine) as people
expected each computer to have its own language
and application

– FORTRAN II to IV followed, then FORTRAN 66, 77 and
90

– FORTRAN 77 is still used today to re-compile legacy
code.

Chris Kimble
January 2008

FORTRAN

Chris Kimble
January 2008

Very early languages

• COBOL (Common Business Oriented Language)
was first developed as a business language in
1959. It was designed for easy readability and
machine independence
– COBOL statements have a simple “natural language” like

grammar and are arranged in “modules”
– Its only data types were numbers and strings which could

be put into arrays and records so that data could be
sorted

– COBOL 68, 74 and 85 followed. Y2k problem lead to a
resurgence of interest in COBOL and a Tiny COBOL
(for linux) is now available

Chris Kimble
January 2008

“The COBOL Team”

Chris Kimble
January 2008

Early Methods

• Based on program design methods

• Top down structured design based on
decomposition
– The stepwise elaboration from an abstract conceptual

model to implementation level details (early 70’s)
– The decomposition of a complex problem into simpler

sub problems (early 70’s)
– Data flow diagrams (mid 70’s)
– Structured analysis (mid 70’s)

• Leads to the growth of the systems analyst as an
intermediary between programmer and user

Chris Kimble
January 2008

Analysts

User Systems
analyst

OperatorProgrammer Computer

1970 - 1985

Business
analyst

User Technical
analyst

Programmer Operator Computer

1985 -

User Programmer Computer

1960 - 1970

Chris Kimble
January 2008

The Systems Development Life Cycle

• The System Development Life Cycle (SDLC) is the
classic example of the underlying process used to
develop the software in the 1970’s

• The concept was introduced by Royce in 1970 as
an iterative approach to software development

• It:
– Separates logical and physical design
– Separates different functions and activities
– Provides an abstract description of the development

process

Chris Kimble
January 2008

The ‘Classic’ Waterfall model

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

Logical
Design

Physical
Design

Decomposition

Chris Kimble
January 2008

The Systems Development Life Cycle
• There are now many different variations of the

basic model:
– Specification, Design, Validation, Evolution
– Feasibility Study, Analysis, Design, Implementation,

Testing, User Guide, Evaluation
– Requirements Specification, Design Stage, Coding and

Construction, Testing, Installation, Maintenance
– Preliminary Investigation, Systems Analysis, Systems

Design, Systems Development, Systems
Implementation, Systems Maintenance

– Problem/needs identification, Feasibility Study, Systems
Analysis, Systems Design, Implementation, Review and
Maintenance, De-commissioning

– etc, etc …

Chris Kimble
January 2008

Structured Analysis and Design

• Some other approaches
– Jackson Structured Programming uses Data Structure

Diagrams to model inputs and outputs which are then
used to structure the design of the software

– Structured Analysis uses dataflow diagrams (DFDs) to
represent the logical “flow” of data between processes.
These are then used to structure the design of the
software

– Structured Design uses structure charts to show the
decomposition of functions and their allocation to “units”
which are then used to structure the activities associated
with writing the software

Chris Kimble
January 2008

Exercise

• All of the above methods
make similar assumptions
about the relationship
between:

1. Reality and its representation
in the head of the designer

2. The designer’s idea of reality
and its software description

• What are they?

Chris Kimble
January 2008

Answer?

• The key problem was with
the validation of software:
are we building the right
product? The emphasis
was on finding methods to
create closed systems so
that designers could deal
with the growing complexity
of applications

• Although there were still a
number of problems with
writing programs, the
development of new
languages that could be
verified formally lead to the
issue of writing the program
the designer intended to be
seen as a minor issue

The main problem Not a real problem

Chris Kimble
January 2008

Problems with the early languages

• Difficult to understand
– Use specialist notation and emphasis on logic does not

have a counterpart in everyday life

• Difficult to maintain, modify or adapt
– In addition to the above, the links between different parts

of a program are not clear (if there is no documentation)

• Difficult to reuse
– Routines and procedures are produced for one

application and are not easily identified or ported to other
applications

• etc, etc

Chris Kimble
January 2008

Problems with the early methods

• Only appropriate when the requirements are well-
understood (an assumption of completeness?)

• The partitioning of the design into distinct stages
was inflexible

• It was difficult to respond to changing customer
requirements

• They became too large and cumbersome and
added to complexity rather than reducing it

• They provide procedures that become an excuse
for not thinking about the problem

• etc, etc

Chris Kimble
January 2008

Later languages

• Object Orientated (OO) languages are said to
have become popular because of the problems
with the earlier functional / procedural languages

• OO is an approach to the modelling of systems as
a set of objects, and the relationships between
between objects them as associations

• OO languages differ radically from their
predecessors as the concentrate on the object
(the world outside the machine) rather than the
instructions to the computer (the world inside the
machine)

Chris Kimble
January 2008

Later languages

• It can be argued that object oriented languages
first came into existence in 1962 with the creation
of SIMULA I, or in 1967 with SIMULA 67, or in
1971 with SMALLTALK 71, or …

• Object Orientated languages began to gain
commercial dominance in the the 1980’s

• First language was when C++ and later, in the
1990’s, Java cemented the place of object
orientated languages in today's commercial
applications

Chris Kimble
January 2008

Later methods
• Object orientated methods are based on

observation of reality
• However, reality is unimaginably large and

complex, thus the designer has to simplify this by
looking for commonality:
– Look for classes of similar or related objects based on

certain features known to be of interest
– Look for hierarchies where the properties from one object

are passed on to another

• These principles of Objects, Abstraction,
Classification and Inheritance, form the basis of
what is now called the Object Orientated approach

Chris Kimble
January 2008

Object Oriented approaches

• Object-oriented analysis (OOA) is concerned with
developing software requirements and
specifications that are expressed as an object
model.

• Object-oriented design (OOD) is concerned with
developing an object-oriented model of a software
system to implement the identified requirements.

Chris Kimble
January 2008

Object Oriented approaches

• Unified Modelling Language (UML) is an attempt
to develop a single approach to OO analysis and
design

• It is a graphical language, or a notation, for
modelling system analysis and design concepts in
an object-oriented fashion

• It provides a set of rules and semantics that can
be used to specify the structure and logic of a
system

Chris Kimble
January 2008

Object Oriented approaches

• The Rational Unified Process (RUP) provides a
flexible framework that can be used to describe
specific development processes

• the essence of RUP is iteration; there are four
phases in the software cycle
– Inception - do you and the customer have the same

understanding of the system?
– Elaboration – can you actually build the system?
– Construction - are you developing the product?
– Transition - are you trying to get the customer to take

ownership of the system?

Chris Kimble
January 2008

Return to the SDLC

• The 'Classic' System Development Life Cycle was
a model of the process used to develop the
software in the 1970’s

• The more iterative / evolutionary approach of OO
led to attempts to rethink of the 'Classic' SDLC

• The Boehm spiral model (1988) is the most
notable and is based on the idea of a series of
incremental releases.
– The development 'spirals' outward from the centre, with

each cycle of the spiral leading to a further refinement of
the system.

Chris Kimble
January 2008

The Spiral Model

Chris Kimble
January 2008

Exercise

• All of the above methods
make similar assumptions
about the relationship
between:

1. Reality and its representation
in the head of the designer

2. The designer’s idea of reality
and its software description

• What are they?

Chris Kimble
January 2008

Answer?

• Although there are a
number of problems with
interpreting reality, by
basing OO approaches on
observed reality the
proponents of OO can
make a strong claim to
have valid descriptions

• The key problem is with the
verification of the software
description. The language,
provides everything needed
to describe a problem, but it
is difficult to demonstrate
that the design conforms to
the requirement

Not a real problem The main problem

Chris Kimble
January 2008

Review
• Programs

– All relationships are closed and complete, a special case

• Early methods
– Relationship between description and reality is assumed

to be complete but not closed (i.e. needs validation)

• Later methods
– Relationship between description and representation is

assumed to be closed but not complete (i.e. needs
verification)

• Other approaches
– Open and incomplete?

Chris Kimble
January 2008

A Preview
• Using notions of:

– Reality, representation and description
– closure and completeness

• We now (potentially) have four ways to think about
the problem

Programs Old approaches

New approaches Others?

Chris Kimble
January 2008

A Preview

• The story so far has been a general introduction
based on the history of the term software and how
notions of software development have changed
over time

• Later we will look more closely at the philosophical
underpinnings of each position and also look at
some specific examples of each approach

• But next, we need to ask “what do we mean by a
methodology”

Chris Kimble
January 2008

Methodologies

• In philosophy a methodology is:
– The analysis of the methods appropriate for a particular

field of study or branch of knowledge.

• In Information systems and software design it is:
– A collection of procedures, techniques, tools and

documentation which will help developers in their efforts
to design and implement a new information system.

– A collection of phases and sub-phases that guide
developers toward appropriate techniques for each stage
of the project and help them plan, manage, control and
evaluate it.

– A selection of tools techniques and methods unified by a
common philosophy.

Chris Kimble
January 2008

Why have a software design
methodology?

1. A better end product
– People may want a methodology to improve the end

product of the development process, that is, they want
better information systems.

2. A better development process
– The benefits of controlling the development process and

identifying the outputs: improved management and
enhanced productivity.

3. A more standardised process
– more integrated systems, staff can move from project to

project without retraining and easier maintenance of
systems.

Chris Kimble
January 2008

Why a philosophy?

• Which approach gives the best solution?
– A system which makes most use of computers is a good

solution
– A system which has accurate documentation is a good

solution
– A system which is the cheapest to run is a good solution
– A system which is most quickly implemented is a good

solution
– A system which is the most adaptable is a good solution
– A system that is liked by the users is a good solution.

• What assumptions do we make when we choose a
particular approach and are they appropriate?

Chris Kimble
January 2008

Next week

• Be prepared …

to review all of the material
we have covered so far
– Lectures
– Notes
– Reading
– etc

