
Chris Kimble
January 2008

Empiricism, realism and rationalism

A summary of the philosophy

Chris Kimble
January 2008

Overview

• An end to Philosophy
– Reality, Representations and Descriptions revisited

• An end to history
– Philosophy and the history software design
– Philosophy and the history change

• An end to (my) conclusions
– The shape of things to come

Chris Kimble
January 2008

Review
Last week …
• Philosophy

– Reality, Representations and Descriptions

• Early and late period in software development
– Earlier period

• Creation of a valid software description is the problem
• Creation of correct code is assumed to be OK

– Later period
• Creation of valid description assumed to be OK
• Verifying that code is correct is a problem

• A methodology = a collection of tools, techniques
and methods unified by a common philosophy

Chris Kimble
January 2008

Review

Programs Old approaches

New approaches Others?

• Using our notion of equivalence from lecture 1, we
now have four ways to think about the problem

Chris Kimble
January 2008

Some questions

• Do any of the previous categories actually exist in
practice?
– Can we find examples of each, and what are they?

• Is there any theoretical explanations for these
categories?
– What is the explanations?
– What are their implications?
– How well do the examples match the theory?

Chris Kimble
January 2008

Some assertions

• Formal Software Design Methods
– Examples: Unity, Z, VDM

– Assumes software and program descriptions to be
equivalent (i.e. both are complete and closed)

– By removing any distinction between software and
programs, the formal strand seeks to introduce
mathematical rigour into both program and software
design

Chris Kimble
January 2008

Some assertions

• Semi formal Software Design Methods
– Examples: Jackson System Development, Structured

Systems Analysis and Design Method

– Has strong links to program design methods

– Assumes the software description is complete, but not
closed

– The focus is on the logical flow of control in the program,
which frees the programmer from having to be concerned
with any physical details of the implementation

Chris Kimble
January 2008

Some assertions

• Object orientated Software Design Methods
– Examples: Booch Object Oriented Design, Rational

Unified Process

– Has strong links to object oriented languages

– Assumes the software description is closed but not
complete

– Uses (closed) reality as a baseline to free the designer
from concerns about the problems of dealing with
inaccurate representations of the physical system

Chris Kimble
January 2008

Some assertions

• Holistic Software Design Methods
– Examples: Soft Systems Methodology, Ethics

– Attempts to look at the whole system

– Abandons any relationship between program design and
software design

– Does not assume the software description is closed or
complete

Chris Kimble
January 2008

Underlying Theory

• We have asserted that there are examples of
methods that to fit into each of the four categories

• However, if a methodology is “a collection of tools,
techniques and methods unified by a common
philosophy”, what is the philosophy that underlies
each?

• Is there any theoretical basis for this classification?

Chris Kimble
January 2008

The last slice of philosophy

• Epistemology (Rationalism and Empiricism)
– Epistemology is concerned with theories of knowledge,

asking: “What can we know and how do we know it”?
Epistemological arguments are those that focus on the
study and characterisation of knowledge.

• Ontology (Realism and Anti Realism)
– Ontology is concerned with theories of existence, asking:

“What is the essence and nature of the world”?
Ontological arguments are concerned with the nature of
reality; without any concern for how that nature might be
‘known’.

Chris Kimble
January 2008

Rationalism and Realism

• Rationalist arguments deal principally with
epistemology claiming that reason is source of all
knowledge and that everything that can be known,
must be intelligible and rationally explicable

• Realist arguments deal principally with ontology
claiming that there is such a thing as truth and that
all beliefs can be tested against a reality that is
knowable

Chris Kimble
January 2008

Empiricism and Anti-Realism

• Empiricist arguments deal principally with
epistemology claiming that all knowledge derives
from observation. Everything that can be known,
can only be known through experience.

• Anti-Realist arguments deal principally with
ontology claiming that the perception of reality is
so bound to the mind that observes it, that it is
impossible to conceive of the ‘true’ nature of
objects

Chris Kimble
January 2008

Philosophy and Software Design
Methods

• Formal
– Examples: Unity, Z, VDM

– There is a seamless equivalence between the software
description, the representation in the designers mind and
the underlying aspects of reality that are being modelled

– There is an answer that is ‘true’ and this can be
discovered by the application of logic and reason = realist
ontology and rationalist epistemology

Chris Kimble
January 2008

Philosophy and Software Design
Methods

• Semi formal
– Examples: Jackson System Development, Structured

Systems Analysis and Design Method

– Software designs that are logically correct do not always
reflect the properties the same software design has in
reality

– Allowing a split between logical and physical designs =
anti-realist ontology and rationalist epistemology

Chris Kimble
January 2008

Philosophy and Software Design
Methods

• Object orientated
– Examples: Booch Object Oriented Design, Rational

Unified Process

– The software description is formed from observation of
reality

– Rather than working from the description to reality, these
methods work from reality back to the description =
realist ontology and empiricist epistemology

Chris Kimble
January 2008

Philosophy and Software Design
Methods

• Holistic
– Examples: Soft Systems Methodology, Ethics

– Relationships between features of the software design
and reality are always a matter of conjecture and open to
challenge

– Anti-realist ontology and empiricist epistemology

Chris Kimble
January 2008

Philosophy and Software Design
Methods: a Summary

Empiricist

Empiricist

Rationalist

Rationalist

Epistemological
Position

Anti-RealistHolistic

RealistObject-Oriented

Anti-RealistSemi-Formal

RealistFormal

Ontological
Position

Research Strand

Chris Kimble
January 2008

Review

• We have:
– A way to describe equivalence
– An understanding of the differences between programs

and software
– An understanding of the different approaches that might

be taken to developing software
– A classification of software design methods that can be

shown to have both “real world” examples and a basis in
theory

• Is that all we need to think about?

Chris Kimble
January 2008

Exercise

• Review the material we
have covered so far

• What are the practical
implications of our
theoretical contemplations?

Chris Kimble
January 2008

Implications of theoretical
standpoint

• Descriptions and Representations
– The distinction between descriptions and representations

deal with the knowledge relationship and hence are the
concern of epistemology

• Representations and Reality
– The distinction between representations and reality deal

with the information relationship and hence are the
concern of ontology

Chris Kimble
January 2008

Descriptions and Representations
(Epistemology)

• Implications of an empiricist viewpoint
– The designer forms their representation of reality, and

then from this experience, they form a description of their
representation.

– However, forming the description is an experience and so
the representation will change

– The representation and the description are always out of
step and the description is always incomplete

• Consequences
– Empiricist arguments offer a natural way to deal with

change as a result of experience
– Because different designers can have different

representations design consistency can be a problem

Chris Kimble
January 2008

Descriptions and Representations
(Epistemology)

• Implications of an rationalist viewpoint
– The designer starts with the description and, by applying

the principles of reason, forms a representation from the
description.

– Because reason is independent of experience, the
process now stops

– The description and representation remain in step and
complete - even if the description changes.

• Consequences
– Rationalist approaches produce static software

descriptions with no means of dealing with change
– By equating the description with the representation, they

lose any notion of designer experience

Chris Kimble
January 2008

Representations and Reality
(Ontology)

• Implications of an Realist viewpoint
– Realist arguments emphasise that reality is independent

of a designer
– Because there is only one ‘true’ reality it each designer’s

representation is based on the same reality
– All of the representations and the underlying reality

remain in step even if the underlying reality changes
• Consequences

– As each designer is working from the same reality, realist
arguments are likely to help software designers produce
software that is more cohesive

– realist arguments deny the validity of different viewpoints
and may produce designs that lack innovation

Chris Kimble
January 2008

Representations and Reality
(Ontology)

• Implications of an anti-realist viewpoint
– The representation of an individual designer is unique to

that designer
– Reality only exist to the extent that is perceived by an

individual
– Representations and reality are never in step

• Consequences
– As each designer is working from a different reality, anti-

realist arguments mean that it is unlikely that software
designers will produce cohesive software

– Anti-realist arguments deny the designer the opportunity
of establishing common ground with either clients of
other designers

Chris Kimble
January 2008

What's next?

Do any of the previous
categories actually exist in
practice?

Can we find examples of
each, and what are they?

Are there any theoretical
explanations for these
categories?

What is the explanations?
What are their
implications?
How well do the examples
match the theory?

Chris Kimble
January 2008

The shape of things to come

• Next week we begin to look at specific examples
• The week after, practical sessions begin
• I give a lecture one week, you present a seminar

paper on the same topic the next week which
answers the question
– “How well do the examples match the theory?”

• Week 4
(me) Formal Methodologies
– (e.g. Unity, Z, VDM)
(you) Background reading (in own time)

Chris Kimble
January 2008

The shape of things to come

• Week 5
(me) Semi-Formal or Structured Methodologies
– (e.g. Jackson System Development, Structured Systems

Analysis and Design Method)
(you) Background reading (in own time)
(you) Formal Methodologies (in practical slot)

• Week 6
(me) Object-Oriented Methodologies
– (e.g. Object Process Methodology, Rational Unified

Process, Object Modelling Technique)
…

Chris Kimble
January 2008

The shape of things to come
• Week 7

(me) Holistic Methodologies
– (e.g. Soft Systems Methodology, Ethics)
…

• Week 8
(me) Blended /Mixed Methodologies
– (e.g. Merise, Multiview)
….

• Week 9
(me) Review of everything
(you) Blended /Mixed Methodologies (in practical slot)

