
Chris Kimble
February 2008

Formal Methodologies

Build it and they will come

Chris Kimble
February 2008

Overview

• A review of the theory
• Types of Formal Methods
• Success ...
• ... and lack of success

– “Myths”
– Views from Industry
– Experimental evidence

• An example from life

Chris Kimble
February 2008

Review

• Last week
– A classification of software design methods based on

philosophical theory
• Rationalism and Empiricism (Epistemologies)
• Realism and Anti Realism (Ontologies)

– An indication (assertion) of what sort of methods might fit
into each category

– An examination of the practical implications of these
viewpoints

– An explanation of what comes next

Chris Kimble
February 2008

Preview

• What are the key features of formal methods?
– Assumes software and program descriptions to be

equivalent (i.e. both are complete and closed)
– There is a seamless equivalence between the software

description, the representation in the designers mind and
the underlying aspects of reality that are being modelled

– By removing any distinction between software and
programs, the formal strand seeks to introduce
mathematical rigour into both program and software
design

– There is a correct answer that can be discovered by the
application of logic and reason = realist ontology and
rationalist epistemology

Chris Kimble
February 2008

Rationalism and Realism

• Rationalist arguments deal principally with
epistemology claiming that reason is source of all
knowledge and that everything that can be known,
must be intelligible and rationally explicable

• Realist arguments deal principally with ontology
claiming that there is such a thing as truth and that
all beliefs can be tested against a reality that is
knowable

Chris Kimble
February 2008

Formal methods

Chris Kimble
February 2008

Formal methods …

• Have been around for a long time but have never
gained wide acceptance except in certain niche
applications (typically secure and/or safety critical
systems)

• Have their own (passionate) advocates
• Have a list of “success stories” ...
• ... and also have a list of reasons why they are not

widely used

Chris Kimble
February 2008

Formal Methods

Two types of formal methods:
• Type I

– Based on set theory and first order predicate calculus
– Based on model-oriented approach where the system’s

behaviour is specified as a mathematical model of the
underlying state (data) and a collection of operations on
that state.

• Type II
– Based on temporal logic (an extension of propositional

logic to show how the truth values change with the time)
– Based on property-oriented approach where the system’s

behaviour is specified indirectly by stating a set of
properties (axioms) that the system must satisfy

Chris Kimble
February 2008

Examples: Z, VDM, UNITY

• Z and VDM
– Type I
– Can be used to create an explicit model of the system

state which can be used as the basis for implementation

• UNITY
– Type II
– supports the specification of both synchronous and

asynchronous behaviours

Chris Kimble
February 2008

Z

• The Z notation was originally developed by the
Programming Research Group at Oxford
University in the late 1970s and later developed to
include standards, tool-support, extensions, etc

• It is based on first-order predicate logic and
contains a catalogue (toolkit) of commonly used
functions and predicates.

• Strictly speaking Z is not a method but a notation
but examples of refining “Z style” abstract models
into more concrete ones do exist

Chris Kimble
February 2008

VDM

• The Vienna Development Method (VDM) began as
specification language called Meta-IV in the
Vienna IBM Laboratory in 1978

• VDM is claimed to be a complete program
development method based on the model-oriented
specification language (VDM-SL)

• VDM-SL is similar to the Z notation, but has syntax
for the description of software modules and
algorithms

Chris Kimble
February 2008

UNITY

• UNITY is “a programming notation and logic to
reason about parallel and distributed programs”

• It was created in 1988 and attempts to focus on
what, instead of where, when or how

• An execution starts from any state satisfying the
initial condition, every statement is run in a random
order until a state is reached where further
execution do not change it

Chris Kimble
February 2008

Success Stories

– Achieving clearance to carry sensitive information
through an Internet gateway

– Assuring safety in the development of programmable
logic controllers

– Certifying the Darlington Nuclear Generating Station
plant shutdown system

– Designing the software to reduce train separation in the
Paris Metro

– Developing a collision avoidance system for United
States airspace

– Developing a transaction processing system for IBM
– Developing an air traffic control system
– The design and verification of a RISC processor

Chris Kimble
February 2008

Why are they not more widely used?

• The reason for the lack of acceptance is usually
attributed to unfounded “myths” or a simple
“misunderstanding” of what formal methods are
really about.

The Formal Methods Blues
• “I'm just a soul whose intentions are good,

Oh Lord, please don't let me be misunderstood”
– (Bennie Benjamin, Sal Marcus, Gloria Caldwell)

Chris Kimble
February 2008

Why are they not more widely used?

Some examples:

• Seven Myths of Formal Methods
– (Hall,1990)

• Seven More Myths of Formal Methods
– (Bowen & Hinchey, 1994)

• Revisiting Seven Myths of Formal Methods
– (Tretmans, Wijbrans & Chaudron, 2001)

Chris Kimble
February 2008

The “Myths” of Formal Methods
(Hall, 1990)

• Myth 1: formal methods guarantee perfect software and
eliminate the need for testing.

• Myth 2: formal methods are all about proving programs
correct.

• Myth 3: formal methods are only useful in safety-critical
systems.

• Myth 4: application of formal methods requires highly trained
mathematicians.

• Myth 5: applications of formal methods increases
development costs.

• Myth 6: formal methods are unacceptable to users.
• Myth 7: formal methods are not used on real large-scale

systems.

Chris Kimble
February 2008

Myth 1

• Argument:
– Formal methods can guarantee that software is perfect

• Counter argument:
– Formal methods are very helpful at finding errors early on

and can nearly eliminate certain classes of error

Chris Kimble
February 2008

Myth 2

• Argument:
– Formal methods are all about program proving

• Counter argument:
– They work largely by making you think very hard about

the system you propose to build

Chris Kimble
February 2008

Myth 3

• Argument:
– Formal methods are only useful for safety-critical

systems

• Counter argument:
– They are useful for almost any application

Chris Kimble
February 2008

Myth 4

• Argument:
– Formal methods require highly trained mathematicians

• Counter argument:
– They are based on mathematical specifications, which

are much easier to understand than programs

Chris Kimble
February 2008

Myth 5

• Argument:
– Formal methods increase the cost of development

• Counter argument:
– They can decrease the cost of development

Chris Kimble
February 2008

Myth 6

• Argument:
– Formal methods are unacceptable to users

• Counter argument:
– They can help clients understand what they are buying

Chris Kimble
February 2008

Myth 7

• Argument:
– Formal methods are not used on real, large-scale

software

• Counter argument:
– They are being used successfully on practical projects in

industry

Chris Kimble
February 2008

7 more “Myths” of Formal Methods
(Bowen & Hinchey, 1994)

• Myth 1: formal methods delay the development process.
• Myth 2: formal methods are not supported by tools.
• Myth 3: formal methods mean forsaking traditional

engineering design methods.
• Myth 4: formal methods only apply to software.
• Myth 5: formal methods are not required.
• Myth 6: formal methods are not supported.
• Myth 7: formal methods people always use formal methods.

Chris Kimble
February 2008

Myth 1:

• Argument:
– Formal Methods delay the development process

• Counter argument:
– Any model of cost and time estimation is based on

historical data and experience, so lack of such
data/experience can lead to underestimation

Chris Kimble
February 2008

Myth 2:

• Argument:
– Formal Methods are not supported by tools

• Counter argument:
– A large number of tools including theorem provers are

Available

Chris Kimble
February 2008

Myth 3:

• Argument:
– Formal Methods means forsaking traditional engineering

methods

• Counter argument:
– A large number of ‘traditional’ methods have been

successfully integrated with formal methods

Chris Kimble
February 2008

Myth 4:

• Argument:
– Formal Methods only apply to software

• Counter argument:
– They have been successfully applied to both hardware

and software design

Chris Kimble
February 2008

Myth 5:

• Argument:
– Formal Methods are not required

• Counter argument:
– The use of formal methods is recommended in any

system where the issue of correctness is of concern and
in some cases, formal methods are mandated, e.g. UK
MoD, Atomic Energy Control Board in Canada, …

Chris Kimble
February 2008

Myth 6:

• Argument:
– Formal Methods are not supported

• Counter argument:
– Many Formal methods are standardized and have large

user communities as well as extensive literature,
conferences, industrial training courses, etc

Chris Kimble
February 2008

Myth 7:

• Argument:
– Formal Methods people always use Formal Methods

• Counter argument:
– UI design is recognised as hard to formalise. It is also

recognised that total formalisation is often impractical
from a resource, time or financial aspect

Chris Kimble
February 2008

Why are they not more widely used?

• Can we learn from industrial experience?

• Observations on industrial practice using formal
method
– (Gerhart, 1993)

• An experience in the formal verification of
industrial software
– (Staskauskas, 1996)

• From formal models to formally based methods:
an industrial experience
– (Ciapessoni et al, 1999)

Chris Kimble
February 2008

The industrial experience?

– It turned out to be impossible to assess any cost
effectiveness trade-off ... all cases involved so many
interwoven factors that it is impossible to allocate pay off
from formal methods usage versus other factors (Gerhart,
1993)

– The need to deal with requirements that change while the
software is being designed seems to be a fact of life
[however] modifying a formal specification ... is an
extremely difficult task (Staskauskas , 1996)

– The ... use of formal methods helped to improve the
quality of the system. Since this was the main goal of the
use of formal methods, it can be concluded that their
application was a success (Tretmans, 2001)

Chris Kimble
February 2008

Why are they not more widely used?

• Can we find out through experiments?

• Why Are Formal Methods Not Used More Widely?
(Knight et al, 1997)
– Experiment = develop a formal specification for a nuclear

reactor using Z, PVS and statecharts, and then assess
the results using (a) developers, (b) engineers and (c)
computer scientists

– Conclusion = there are many practical barriers to [formal
methods] routine use in industrial software development
projects

Chris Kimble
February 2008

A practical example

• Staskauskas, M. G. (1996). An experience in the
formal verification of industrial software. Commun.
ACM, 39(12es), 256.

