
Developing a UML Profile for Modelling Knowledge-
Based Systems

Mohd Syazwan Abdullah, Andy Evans, Ian Benest, Chris Kimble

Department of Computer Science, University of York,
Heslington, YO10 5DD, United Kingdom

{syazwan, andye, kimble, idb } @cs.york.ac.uk

Abstract. Knowledge engineers have favoured a diagrammatic approach for
developing knowledge-based systems by adopting those used in software
engineering. However, these modelling techniques tend to be used in an ad hoc
way and are highly dependent on the modelling experience of the engineers
involved. This paper focuses on the use of the Unified Modeling Language
(UML) Profiles for knowledge modelling. It identifies the short-comings of
current approaches in adopting UML and discusses the need to have an
extension to UML through the profile mechanism. A work-in-progress on
creating such a profile is also presented.

1 Introduction

The use and management of knowledge in enterprises has become a commercial
necessity for many enterprises, in order that they manage their corporate intellectual
assets and gain competitive advantage. Most knowledge resides in human memories
and managing it is seen as a human-oriented process rather than a technology-based
solution. Nevertheless, technology can be utilised as a knowledge management
enabler with automated tools, including the internet and groupware systems. One of
the prominent tools in managing knowledge is knowledge-based systems (KBS).

Knowledge-based systems can be deployed as the technological means for capturing
and managing both explicit and tacit knowledge as part of an organisation’s
knowledge management initiative. But, before these can be built, the knowledge that
pervades the organisation must be identified and modelled using appropriate
acquisition, representation and modelling techniques.

This paper is organised as follows: Section II describes KBS and the field of
knowledge engineering. Section III gives an overview of the rôle of knowledge
modelling and the techniques that are currently used. Section IV explains the need to
have an extension to UML for modelling knowledge, while Section V describes what
is a UML profile. Section VI presents the initial knowledge modelling profile
constructed using identified modelling concepts, while Section VII concludes and
indicates the direction for future work.

2 Mohd Syazwan Abdullah, Andy Evans, Ian Benest, Chris Kimble

2 Knowledge-Based Engineering and Knowledge Engineering

A KBS is a software application with an explicit, declarative description of
knowledge for a certain application [1]. There is no single dividing line that
differentiates a KBS and an information/software system as almost all contain
knowledge elements in them [2]. An information system is a set of interrelated
components that together collects, processes, stores, analyses, and disseminates data
and information in an organization. In contrast, a KBS has knowledge represented in
an explicit form, and hence the increased importance of knowledge modelling [2]
compared with that required of an information system.

The development process of a KBS is similar to any general system development;
stages such as requirements gathering, system analysis, system design, system
development and implementation are common activities. The stages in KBS
development are: business modelling, conceptual modelling, knowledge acquisition,
knowledge system design and KBS implementation [1].

A KBS is developed using knowledge engineering (KE) techniques [3]. These are
similar to software engineering (SE) techniques, but have an emphasis on knowledge
rather than data or information processing and they inherently advocate an
engineering approach to the process of developing a KBS. The central theme in this
approach is the conceptual modelling of the system in the analysis and design stages
of the development process. Many knowledge engineering (KE) methodologies have
been developed with an emphasis on the use of models, for example CommandKADS
[2], MIKE [4], Protégé [5], and KARL [4].

Traditional KE techniques were widely used to construct expert systems – systems
built from the knowledge of one or more experts – essentially, a process of knowledge
transfer [3]. This is the development process of the first generation of expert systems,
in which the knowledge of the expert is directly transferred into the knowledge base
in the form of rules. The disadvantage of this approach is that the knowledge of the
expert is captured in the form of hard codes within the system with little
understanding of how they are linked or connected with each other [2]. This creates a
new problem if the knowledge base is to be updated as changes require substantial
effort in reconstituting the coded rules in order to implement the needed changes.

KE is no longer simply a means of mining the knowledge from the expert’s head [2].
It now encompasses “methods and techniques for knowledge acquisition, modelling,
representation and use of knowledge” [2]. The shift towards the modelling approach
has also enabled knowledge to be re-used in different areas of the same domain [3]. In
the past, most knowledge systems had to be developed from scratch every time a new
system was needed, and it could not interact with other systems in the organization.
The paradigm shift towards a modelling strategy has resulted in reducing
development costs [2].

Developing a UML Profile for Modelling Knowledge-Based Systems 3

3.0 Knowledge Modelling

“A model is a simplification of reality” [6]. Real systems are large entities consisting
of interrelated components working together in a complex manner. Models are used
both to build descriptions of the problem domain in software and to define the
systems development process [7]. Models help people to appreciate and understand
such complexity by enabling them to look at each particular area of the system in
turn. The value of a model in the context of systems development is dependent on the
effects it has on the systems being produced. Models capture the essential features of
real systems by partitioning them into components that are easy to understand and to
manipulate. It is very difficult for the human mind to be able to capture all the
features of a system as a mental model and then convey them in either written or oral
form. The mind often works better with a visual representation. Models are very much
associated with the domain they represent. That domain will define their practicing
communities, modelling languages and their associated tools. Each domain will have
their own techniques for representing concepts associated to that domain. To model
the system, there is a need for a language to express the description of the system [8].
Modelling languages are also used in the process of modelling knowledge when
developing knowledge-based systems.

Knowledge modelling is used in knowledge acquisition activities as a way of
structuring projects, acquiring and validating knowledge and storing knowledge for
future use [9]. Knowledge models are structured representations of knowledge. They
use symbols to represent pieces of knowledge and their relationships. Knowledge
models are as follows: (1) symbolic character-based languages – logic; (2)
diagrammatic representations – networks and ladders; (3) tabular representations –
matrices and frames and (4) structured text – hypertext. Most models are constructed
from knowledge objects such as concepts, instances, processes (tasks, activities),
attributes and values, rules and relations.

Knowledge representation is one of the fundamental topics in the area of artificial
intelligence (which investigates representation techniques, tools and languages).
Knowledge about the domain and the implementation independent reasoning-process
of the KBS however is usually addressed through the use of ontologies and problem-
solving methods. There are five prominent representation techniques widely used in
developing KBSs; they are attribute-value pairs, object-attribute-value triplets,
semantic networks, frames and logic.

By analysing the knowledge objects and representation techniques described earlier in
this section, it will be noticed that they have similar concepts to those adopted for
object-oriented modelling. Examples of these concepts are objects, attributes, class,
subclass, relationship, instances and others. Though these concepts have different
meanings in different techniques, in most cases they refer to a similar thing. This
paves the way to consider using object-oriented techniques as the standard means of
representing them.

4 Mohd Syazwan Abdullah, Andy Evans, Ian Benest, Chris Kimble

3.1 Ontology and Problem-Solving Methods

Ontologies and Problem-Solving Methods (PSMs) enable the construction of KBSs
through reusable components across domains and tasks [8]. Systems developers in the
KE community are currently trying to adopt component-based development by
incorporating ontologies and PSMs in order to deploy KBSs faster.

Ontologies are used to represent domain knowledge in knowledge-based programs.
This is achieved using formal declarative representations of the domain knowledge;
that is sets of objects and their describable relationships [11]. In the context of
knowledge modelling, ontology defines the content-specific knowledge representation
elements such as domain-dependent classes, relations, functions and object constants
[10]. Researchers in the area of conceptual modelling and knowledge modelling have
started to realise the importance of ontology in developing domain models since the
underlying principle of modelling is to achieve agreed representations in a unified
manner for the domains in which they are investigating. The works of [10], [11] and
[12] demonstrate such efforts on the usage of ontologies.

PSMs describe the reasoning-process (generic inference patterns) at an abstract level
independent of the representation formalism (e.g. rules, frames etc) [5], [10]. PSMs
have influenced the leading knowledge-engineering frameworks such as Task
Structures, Rôle-Limiting Methods, CommonKADS, Protégé, MIKE, Components of
Expertise, EXCEPT, GDM and VITAL [10]. Most of these frameworks suggest that a
PSM: decomposes the whole reasoning task into elementary inferences that are easy
to understand, defines the types of knowledge that will be used by the inference steps
to be completed, and defines the control mechanisms and flow of knowledge among
the inferences.

3.2 Knowledge Modelling Techniques

The importance of knowledge modelling in developing KBSs has been discussed in
[2]. They argue that models are important for understanding the working mechanisms
within a KBS; such mechanisms are: the tasks, methods, how knowledge is inferred,
the domain knowledge and its schemas. Modelling contributes to the understanding of
the source of knowledge, the inputs and outputs, the flow of knowledge and the
identification of other variables such as the impact that management action has on the
organizational knowledge. Using conceptual modelling, systems development can be
faster and more efficient through the re-use of existing models for different areas of
the same domain. Therefore, understanding and selecting the modelling technique
that is appropriate for different domains of knowledge will ensure the success of the
KBS being designed.

Amongst the many techniques used to model knowledge, the most common are
CommonKADS, Protégé 2000, the Unified Modeling Language (UML), and Multi-
perspective modelling.

Developing a UML Profile for Modelling Knowledge-Based Systems 5

CommonKADS has become the de facto standard for knowledge modelling and is
used extensively in European research projects. It supports structured KE techniques,
provides tools for corporate knowledge management and includes methods that
perform a detailed analysis of knowledge intensive tasks and processes. A suite of
models is at the core of the CommonKADS methodology [2]. The suite supports the
modelling of the organization, the tasks that are performed, the agents that are
responsible for carrying out the tasks, the knowledge itself, the means by which that
knowledge is communicated, and the design of the knowledge management system.
CommonKADS incorporates an object-oriented development process and uses UML
notations such as class diagrams, use-case diagrams, activity diagrams and state
diagrams. CommonKADS also has its own graphical notations for task
decomposition, inference structures and domain schema generation [2].

It has become a trend for system developers and researchers in KE to adopt object
oriented modelling in developing conceptual models for knowledge systems [13] [14]
[15]. A careful analysis of the literature shows that they have all been influenced by
CommonKADS – an approach that is highly favoured, since it encourages the use of
object-oriented development and the notations from UML.

Protégé was developed for domain specific applications [5] at Stanford Medical
Informatics. Protégé 2000 is defined as “an extensible, platform-independent
environment for creating and editing ontologies and knowledge bases” [16]. The
Protégé 2000 knowledge modelling environment is a frame-based ontology editing
tool with knowledge acquisition tools that are widely used for domain modelling.

The Unified Modeling Language (UML) together with the Object Constraint
Language (OCL) is the de-facto standard for object modelling in software engineering
as defined by the Object Management Group (OMG). The UML is a general-purpose
modelling language that covers a wide spectrum of different application domains.
UML is incorporated in other mainstream techniques such as CommonKADS and
Multi-perspective modelling for knowledge modelling purposes. Multi-perspective
modelling enables a number of techniques to be used together, each technique being
the most appropriate for modelling that particular aspect of knowledge [17]. It has its
roots in software engineering (multiple-view technique).

3.3 Current Trends

Although KBSs are developed using knowledge engineering techniques, the
modelling aspects of it are largely dependent on software engineering modelling
languages. Most of the modelling techniques adopted a mix of notations derived from
different modelling languages. The object-oriented paradigm has influenced systems
development activities in software engineering and this trend has also been reflected
in knowledge engineering methodologies such as CommonKADS [2], Methodology
and tools Oriented to Knowledge-based engineering Applications (MOKA) projects
[15] and KBS developments in general as shown in the works of [13], [18] and [19].
However, the main adopters of UML for knowledge modelling are CommonKADS

6 Mohd Syazwan Abdullah, Andy Evans, Ian Benest, Chris Kimble

[2] and MOKA [15]. The MOKA Modelling Language (MML) is an extension of
UML that represents engineering product design knowledge at a user level for
deployment in knowledge-based engineering applications. It provides default meta-
models for the product and design process so as to manage engineering knowledge.
However, it is an informal extension to UML and does not fulfill the OMG’s
requirements for an extension mechanism; these are presented in the section 5.

Object oriented methods are gaining in popularity because of their expressiveness,
flexibility and ease of use. One of UML’s important features is that it is an extensible
language brought about by the application of profiles. This makes UML one of the
favoured techniques for knowledge modelling, for both the methodological aspect of
KBS development and its standardisation. Thus, extensions to UML, can be formally
introduced using UML Profiles for knowledge modelling.

4 Need for UML Extension

The major problem with knowledge modelling is that there is no standard technique
available to model the knowledge for developing a knowledge based system. Most of
the techniques used by the researchers in the field of knowledge engineering are
adapted from the software engineering community. The techniques used in knowledge
modelling are project based using a mix of notations such as UML, IDEF, SADT,
OMT, Multi-perspective Modelling and so on. Examples mentioned earlier are the
CommonKADS methodology and Multi-perspective Modelling.

Another important factor to consider is that most system analysis and design courses
these days are teaching object-oriented modelling techniques as a tool for systems
modelling and development. The main influence is the growing importance of object-
oriented programming languages like Java in systems development. Due to the formal
training received and the adoption of object-oriented programming by this generation
of system analyst, most will have the knowledge of UML and use them for modelling
purposes.

In addition to this, enterprise systems these days are an integration of various systems
built on different platforms with the ability to communicate with each other. Most of
these systems especially the new ones are built on platforms that support object-
oriented languages, model driven architectures, object-based modelling etc.
Knowledge-based systems are no longer stand-alone systems, but are part of the
enterprise group of systems. As there is no standard way of modelling knowledge
systems using knowledge engineering techniques, there is a need to extend those that
have been standardised in software engineering. This promotes the use of a common
modelling language, so that the vision of integration, reusability and interoperability
within an enterprise’s system will be achieved. It is proposed to model knowledge
using an extension to UML.

Developing a UML Profile for Modelling Knowledge-Based Systems 7

UML is widely adopted as the object oriented way for systems development and has
been deployed in other domains such as real-time systems, hypermedia design,
embedded systems and ontology modelling. There are arguments that UML semantics
are not well defined [20][21] compared to formal methods and these are being
addressed by the OMG in developing UML version 2.0 that will have enhanced meta-
model concepts and unambiguous semantics. Developing UML Profiles for
knowledge modelling will enable KBSs developers to use UML in a formal and
systematic manner. This can be achieved through the means of developing UML
profiles with precisely defined notations, semantics and syntax which enables this
extension to be formally integrated into the existing profiles of UML, and adheres to
the profiles requirements proposed by OMG [22].

The UML is a general-purpose modelling language that covers a wide range of
different application domains. While this feature might be adequate for modelling in a
broader area, some domain-specific concepts and techniques need a more specialised
refinement to the existing construct of the language [22]. This is achievable through
the usage of the extension mechanism provided by UML known as profiles.

5 Profile Extension Mechanism

The OMG [23] has defined two extension mechanisms for extending the UML:
profiles and metamodel extensions. Profiles are sometimes referred to as the
“lightweight” extension mechanism of UML [22]. It contains a predefined set of
Stereotypes, TaggedValues, Constraints, and notation icons that collectively
specialize and tailor the UML for a specific domain or process. The main construct in
the profile is the stereotype that is purely an extension mechanism. In the model, it is
marked as <<stereotypes>> and has the same structure (attributes, associations,
operations) defined by the metamodel that describes it. However, the usage of
stereotypes is restricted as changes in the semantic, structure, and the introduction of
new elements to the metamodel is not permitted [24]. The “heavyweight” extensions
mechanism to UML known as the metamodel extension is defined through the Meta-
Object Facility (MOF) specification [25] which involves the process of defining a
new metamodel. Using this extension, new metaclasses and metaconstructors can be
added to the UML metamodel. This extension is a more flexible approach as new
concepts may be represented at the metamodel level. The difference between the
profile and metamodel extensions comes from the restrictions on profiles in extending
the UML metamodel [25]. These restrictions impose that profile based extensions
must comply with the standard semantics of the UML metamodel. However, these
restrictions are not applicable to the MOF based extensions, which can define a new
metamodel. Nevertheless, both extensions are called profile.

UML Profile for Enterprise Application Integration (EAI), UML Profiles for
CORBA, UML Profile for Enterprise Distributed Object Computing (EDOC), UML
Testing Profile, and UML Profile for Schedulability, Performance and Time are some
of the formal profiles developed by OMG.

8 Mohd Syazwan Abdullah, Andy Evans, Ian Benest, Chris Kimble

6 UML Knowledge Modelling Profile

The scope of the profile described below is adapted from [26]. The aim of the UML
Knowledge Modelling Profile is to define a language for designing, visualizing,
specifying, analyzing, constructing and documenting the artifacts of knowledge-based
systems. It is a knowledge modelling language that can be used with all major object
technologies and applied to knowledge-based systems in various application domains
and task types. The UML profile is based on the UML 2.0 specifications and is
defined by using the metamodelling extension approach of UML. It is being designed
with the following principles in mind: (1) UML integration: as a real UML based
profile, the knowledge modelling profileis defined based on the metamodel provided
in the UML superstructure and follows the the principles of UML profiles as defined
in the UML 2.0 and (2) Reuse and minimalist: wherever possible, the knowledge
modelling profile makes direct use of the UML concepts and extends them, adding
new concepts only where needed.

The discussion in this section mainly refers to the CommonKADS methodology for
KBS development [2] and related discussion in [27]. Tasks are the main
categorisation of action that need to be performed by the KBS which typically refers
to the “what we want the system to do”. Each task type will have their own
terminology, task methods, inputs, outputs, inference mechanism being used, and the
type of knowledge used; this is presented in [2]. Current studies on extending UML to
model knowledge only concentrates on certain task types such as product design in
MOKA [15] and UML-based product configuration design [13]. There are no specific
studies being conducted in creating a generic profile that can be used for different task
types; research now underway at York is focusing on this work.

In [28] there are suggestions as to how to construct a modelling language. This
involves the creation of an abstract syntax model, identifies and models concepts,
specifies well-formed rules and operations, and finally validates and tests the model.
The first step in creating the meta-model of the knowledge modelling profile is to
build its abstract syntax model. The syntax model is used to describe the concepts of
the profile and the relationships between concepts. The concepts will provide a
vocabulary and grammar for constructing models in the profile [28]. The following
important knowledge modelling concepts have been identified from the literature [2],
[27] and are itemised in Table 1.

Table 1. Main Knowledge Modelling Concepts

Modelling Concept Description
Concept (class) Class that represents the category of things
Inference Describes the lowest level of functional

decomposition on carrying out primitive reasoning
steps

Inference Method Method for implementing the inference
Transfer Function Transfers information between the reasoning agent

and external entities (system, user)

Developing a UML Profile for Modelling Knowledge-Based Systems 9

Task Defines the reasoning function
Task Method Describes the realization of the task through

subfunction decomposition
Static Knowledge Role Specifies the collection of domain knowledge that is

used to make the inference
Dynamic Knowledge Role Run-time inputs and outputs of inferences
Rule Type Categorization and specification of knowledge
Rule Expressions about an attribute value of a concept
Knowledge Base Collection of data stores that contains instances of

domain knowledge types

The abstract syntax of the knowledge modelling language has been built using these
modelling concepts and the CommonKADS language is adopted for specifying
knowledge models that are defined in the BNF notation [2]. The BNF notation has
been translated into a UML model. In its current form it is a model of the abstract
syntax of a knowledge modelling language, becoming a complete model of the
language: a metamodel. Unless it is viewed as an extension of UML, it is not a
profile, but just a plain metamodel. Efforts are currently focused on developing this
metamodel further by defining well-formedness rules, syntax and semantics for the
language and mapping it to the core UML.

The initial knowledge modelling profile is composed using four main packages based
on their rôle and relationship in modelling KBSs. It consists of the Knowledge Model
package, Task Knowledge package, Inference Knowledge package and Knowledge
package. These packages forms the knowledge modelling language core model and is
shown in Figure 1 as the knowledge modelling profile.

Fig. 1. Knowledge Modelling Profile Core Package

K n o w le d g e M o d e llin g P ro f ile

In fe re n c e K n o w le d g eT a s k K n o w le d g e

K n o w le d g e
K n o w le d g e M o d e l

D o m a in
K n o w le d g e

C o n c e p ts R e la t io n s

u s e s

a c c e s s

R u le T yp e

K n o w le d g e B a s e

M a th e m a tic a l M o d e l

The Domain Knowledge package within the Knowledge Model package describes the
main constructs of the profile. This package is shown in Figure 2.

10 Mohd Syazwan Abdullah, Andy Evans, Ian Benest, Chris Kimble

Fig. 2. Domain Knowledge package

D o m a in K n o w le d g e

K n o w le d g e M o d e l

D o m a in
K n o w le d g e

P S M
K n o w le d g e

I n f e r e n c e
K n o w le d g e

T a s k
K n o w le d g e

D o m a in K n o w le d g e
C o m p o n e n t

D o m a in
S c h e m a

O n t o l o g y
M a p p in g

U s e c o n s t r u c t

K n o w le d g e
B a s e

n a m e : [B i n a r y - R e la t io n , C o n c e p t , M a t h e m a t i c a l M o d e l ,
R e la t i o n , R u le - T y p e , V a lu e - T y p e

D o m a in C o n s t r u c t

The Concept package within the Knowledge Model package describes the concept of
the profile. Concept here represents class. This package is shown in Figure 3.

Fig. 3. Concept Package

C o n c e p t

C o n c e p t

a t t r : is D is jo in t : B o o le a n
 i s C o m p le t e : B o o le a n

S u p e r t y p e

A x io m H a s - p a r t

s u b t y p e o f

a t t r : is D is jo in t : B o o le a n
 i s C o m p le t e : B o o le a n

V ie w p o in t

< o r d e r e d > p a r t - o f

C a r d in a l i t y

E q u a t io n R o le C a r d in a l i t y

D i f f e r e n t ia t io n o fD e f a u l t V a lu eT y p e R a n g e

P r im i t i v e - R a n g e

N u m b e r
R a n g e

I n t e g e r
R a n g e

a t t r : N u m b e r , I n t e g e r , N a t u r a l , R e a l , I m a g e ,
S t r in g , B o o le a n , U n iv e r s a l , D a t e , T e x t

P r im i t i v e - T y p e

V a lu e L is tT y p e

V a lu e - S p e c i f i c a t io n

n a m e :

A t t r ib u t e
*< o r d e r e d >

U s e r D e f in e d T y p e

*
h a s - p a r t s

*

v i e w p o in t s

*

*

t y p e : { n o m in a l I o r d in a l }

V a lu e - T y p e

V a lu e
*

0 . . 1

Developing a UML Profile for Modelling Knowledge-Based Systems 11

The Relations package within the Knowledge Model package describes the relations
in the profile. This package is shown in Figure 4.

Fig. 4. Relation Package

R e l a t i o n

A r g u m e n t

R e l a t i o n
R o l e

A r g u m e n t T y p e

D o m a i n C o n s t r u c t
T y p e

A t t r i b u t e A x i o m

S e t - o f d o m a i n
c o n s t r u c t t y p e

L i s t - o f d o m a i n
c o n s t r u c t t y p e

C a r d i n a l i t y

n a m e : [O b j e c t , C o n c e p t , R u l e - T y p e , R e l a t i o n ,
B i n a r y - R e l a t i o n , M a t h e m a t i c a l M o d e l , V a l u e

B u i l t i n T y p e
n a m e : [C o n c e p t , R u l e - T y p e , S t r u c t u r e ,
R e l a t i o n , B i n a r y - R e l a t i o n , M a t h e m a t i c a l M o d e l

U s e r D e f i n e d T y p e

s u b t y p e

< o r d e r e d >

r o l e

n a m e : t r a n s i t i v e , a s y m m e t r i c , s y , , e t r i c ,
i r r e f l e x i v e , r e f l e x i v e , a n t i s y m m e t r i c

R e l a t i o n - T y p e

*

a r g u m e n t 1 : a r g u m e n t
a r g u m e n t 2 : a r g u m e n t

B i n a r y R e l a t i o n

C o n c e p t

a r g u m e n t 1

*

The Task Knowledge package of the profile describes the task and task method in
detail. This package is shown in Figure 5.

Fig. 5. Task Knowledge Package

T a s k K n o w l e d g e

T a s k K n o w l e d g e

T a s k

I n f e r e n c e K n o w l e d g e T a s k E l e m e n t

a t t r : n a m e

D o m a i n

a t t r : n a m e

G o a l R o l e

O u t p u tI n p u t

< o r d e r e d > < o r d e r e d >

T a s k M e t h o d

S p e c i f i c a t i o n

R o l e D e s c r i p t i o n

r e a l i z e s

T a s k D e c o m p o s i t i o n A s s u m p t i o n sC o n t r o l S t r u c t u r e s

I n t e r m e d i a t e

R o l e

< o r d e r e d >

S t a t e m e n t

R o l e O p e r a t i o n

P s e u d o - c o d e

C o n d i t i o n a l
S t a t e m e n t

C o n t r o l L o o p

R o l e

P r o c - i n p u t

B i n a r y

F u n c t i o n C a l l

P r o c - o u t p u t

R o l e E x p r e s s i o n

U n a r y R o l e

F u n c t i o n

u s e

*

T a s k

I n f e r e n c e

1

r o l e s *

t a s k r o l e : s t r i n g

R o l e D e s c r i p t i o n

r o l e s

*

T a s k R o l e

* *

*

* *

12 Mohd Syazwan Abdullah, Andy Evans, Ian Benest, Chris Kimble

The Inference Knowledge package of the profile describes the inference, knowledge
role and transfer function in detail. This package is shown in Figure 6.

Fig. 6. Inference Knowledge Package

In fe re n c e K n o w le d g e

In fe re n c e K n o w le d g e

T ra n s fe r F u n c t io nIn fe re n c e

U s e C o n s tru c t

O b ta in

T y p eS p e c if ic a t io n

R o le

D y n a m ic
K n o w le d g e R o le

a t tr : n a m e

O p e ra t io n T y p e

S ta t ic
K n o w le d g e R o le

P ro v id e R o leP re s e n tR e c e iv e

D y n a m ic
k n o w le d g e ro le

D o m a in
m a p p in g

S ta t ic D o m a in
R e fe re n c e

D y n a m ic D o m a in
R e fe re n c e

D o m a in
C o n s tru c t T y p e K n o w le d g e B a s e

S e t-o f D o m a in
C o n s tru c t T yp e

L is t -o f D o m a in
C o n s tru c t T y p e

* *

*

0 . .1

ro le s *

0 ..1
*

ty p e : { s ta t ic , d y n a m ic }

K n o w le d g e R o le
ro le s

*

d o m a in m a p p in g

re fe re n c ere fe re n c e

*

* *

The Knowledge package of the profile is grouped into three packages: the Rule Type
package, the Knowledge Base package and the Mathematical Model package. The
Rule Type package within the Knowledge package describes the modelling of rules.
This package is shown in Figure 7.

Fig. 7. Rule Type Package

R u le T y p e

R u le -T y p e -B o d yR u le T y p e

C o n s t r a in t -
R u le -T y p e

Im p lic a t io n -
R u le - T y p e

C o n s e q u e n t

C a rd in a l i t y

U s e r D e f in e d
T y p e

U s e r D e f in e d
T y p e

A n te c e d e n t

U s e r D e f in e d
T y p e

C a r d in a l i t yC a r d in a l i t y

c o n s t r a in t

n a m e : s t r in g

C o n n e c t io n S y m b o l

The Knowledge Base package within the Knowledge package describes the modelling
of knowledge base that represents instances of knowledge. This package is shown in
Figure 8.

Developing a UML Profile for Modelling Knowledge-Based Systems 13

Fig. 8. Knowledge Base Package

K n o w le d g e B a s e

K n o w le d g e B a se

V a ria b le E x p re s s io n A ttr ib u te

V a r ia b le D e c la ra tio n

A n n o ta tio n

H a s -p a rt

T yp e O f

D im e n s io n R o le

T yp e O p e ra to r

P a rt
O p e ra to r

R u le T yp e
E x p re s s io n

E q u a tio n

R u le T yp e

D o m a in s c h e m a

K n o w le d g e B a s e
E x p re s s io n

K n o w le d g e
B a s e U s e

V a ria b le T yp e

R u le T yp e
In s ta n c e

V a lu e

T u p le
U s e r D e fin e d

T yp e R o le

V a lu e

ro le

< o rd e re d >

< o rd e re d >

a rg u m e n t-1 : In s ta n c e s
a rg u m e n t-2 : Iin s ta n c e s
a rg u m e n ts

U s e r D e f in e d T yp e

< o rd e re d >

n a m e : s tr in g

A ttr ib u te In s ta n c e

v a lu e

n a m e : s tr in g

In s ta n c e

in s ta n c e o f

*

*

* * *

C o n c e p t

n a m e : s tr in g

A ttr ib u te In s ta n c e

v a lu e

in s ta n ce o f

R e la tio n

The Mathematical package within the Knowledge package describes the modelling of
mathematical elements used in representing knowledge. This package is shown in
Figure 9.

Fig. 9. Mathematical Model Package

M a t h e m a t i c a l M o d e l

M a t h e m a t i c a l
M o d e l

E q u a t i o n s

M o d e l
R e f e r e n c e

E q u a t i o nT y p e R a n g e

E q u a t i o n L i s t
P a r a m e t e r

F u n c t i o n A r g u m e n t s

< o r d e r e d >

< o r d e r e d >

< o r d e r e d >

*

p a r a m e t e r

*

*

14 Mohd Syazwan Abdullah, Andy Evans, Ian Benest, Chris Kimble

7 Conclusion

Managing knowledge through knowledge-based systems is an important part of an
enterprise’s knowledge management initiatives. These systems have evolved from
being stand-alone machines to being part of the enterprise’s group of systems. The
process of constructing KBSs is similar to other software systems with conceptual
modelling playing an important rôle in the development process. Software
engineering has adopted UML as a standard for modelling, but the field of knowledge
engineering is still searching for the right technique. UML could be adopted for
knowledge modelling as well. While UML in its current state has its limitations, it is
an extensible language and thus can be used to support the knowledge modelling
activity through the profiles mechanism. Developing a profile is not an easy task and
involves many steps. The next step in this research is to specify the well-formed rules
and operations using OCL, then validate the profile using a UML compliant
modelling tool and finally test real-life KBS requirements through case studies in a
number of knowledge-intensive domains.

References

1. Speel, P., Schreiber, A. Th., van Joolingen, W., and Beijer, G.: Conceptual Models
for Knowledge-Based Systems, in Encyclopedia of Computer Science and
Technology. 2001, Marcel Dekker Inc, New York.

2. Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N., de
Velde, W.V. and Wielinga, B.: Knowledge Engineering and Management: The
CommonKADS Methodology. 1999, Massachusetts: MIT Press.

3. Studer, R., Benjamins, R.V., and Fensel, D.: Knowledge Engineering: Principles
and Methods. Data & Knowledge Engineering, 1998. 25: p. 161-197.

4. Angele, J., Fensel, D., Landes, D., Studer, R.: Developing Knowledge-Based
Systems with MIKE. Journal of Automated Software Engineering, 1998. 5(4): p.
389-418.

5. Grosso, W.E., Eriksson, H., Fergerson, R.W., Gennari, S., Tu, S., Musen, M.A.:
Knowledge Modelling at the Millennium (The Design and Evolution of Protege
2000). 1999, Stanford Medical Institute.

6. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modelling Language User
Guide. 1999, Reading, Massachusetts: Addison Wesley.

7. Fowler, M.: What's a Model for?, in Distributed Computing Magazine. 1999. p.
33-37. - Accessed at http://martinfowler.com/articles.html.

8. Fowler, M.: Is There Such a Thing as Object-Oriented Analysis? in Distributed
Computing Magazine. 1999. p. 40-41. Accessed at
http://martinfowler.com/articles.html.

9. Milton, N.: Types of Knowledge Models. 2002. Accessed at
http://www.epistemics.co.uk/Notes/90-0-0.htm

Developing a UML Profile for Modelling Knowledge-Based Systems 15

10.Gomez-Perez, A., Benjamins,V.R.: Overview of Knowledge Sharing and Reuse
Components: Ontologies and Problem-Solving Methods. in IJCAI-99 Workshop on
Ontologies and Problem-Solving Methods (KRR5). 1999. Stockholm, Sweden.

11.Gruber, T.R.: Toward principles for the design of ontologies used for knowledge
sharing. 1993, Report KSL-93-04, Stanford University.

12.Kende, R.: Knowledge Modelling in Support of Knowledge Management. Lecture
Notes in Atrifical Intelligence, 2001. 2070: p. 107-112.

13.Felfernig, A., Friedrich, G.E., Jannach, D.: Generating product configuration
knowledge bases from precise domain extended UML models. in 12 th
International Conference on Software Engineering and Knowledge Engineering
(SEKE'00). 2000. Chicago, USA.

14.Manjarres, A., Pickin, S., Mira, J.: Knowledge model reuse: therapy decision
through specialisation of a generic decision model. Expert Systems with
Applications, 2002. 23(2): p. 113-135.

15.Stokes, M., Managing Engineering Knowledge: MOKA - Methodology for
Knowledge Based Engineering Applications. 2001, London, UK: Professional
Engineering and Publishing Limited.

16.Protege,: Protege Frequently Asked Question. 2002. Accessed at
http://protégé.stanford.edu/faq.html

17.Kingston, J. and A. Macintosh, Knowledge management through multi-perspective
modelling: representing and distributing organizational memory. Knowledge-
Based Systems, 2000. 13: p. 121-131.

18.Chung, L., Subramaniam, N.: Adaptable architecture generation for embedded
systems. Journal of Systems and Software, 2003. 17(3): p. 271-295.

19.Kalogeropoulos, D.A., Carson, E.R., Colinson, P.O.: Towards Knowledge-Based
Systems in Clinical Practice: Development of an integrated Clinical Information
and Knowledge management Support System. Computer Methods and Programs in
Biomedicine, 2003. 72: p. 65-80.

20.Kobryn, C.: A Standardization Odyssey. Communications of the ACM, 1999.
42(10): p. 29-37.

21.Steimann, F., Kuhne, T.: A Radical Reduction of UML's Core Semantics. Lecture
Notes in Computer Science, 2002. 2460: p. 34-48.

22.OMG: Requirements for UML Profile. 1999.
23.OMG: Unified Modeling Language specification (version 1.4). 2001.
24.Perez-Martinez, J.E.: Heavyweight extensions to the UML metamodel to describe

the C3 architectural style. ACM SIGSOFT Software Engineering Notes, 2003.
28(3).

25.OMG: MOF Specification version 1.4. 2002.
26.OMG: UML 2.0 Testing Profile specification. 2003.
27.Abdullah, M.S.: Extending UML Using Profile for Knowledge-Based Systems

Modelling. 2004, Thesis Proposal, Department of Computer Science, University of
York: York.

28.Clark, T., Evans, A., Sammut, P., Willians, J.: Metamodelling for Model-Driven
Development (draft): To be published. 2003.

