
Modelling Knowledge-Based Systems Using UML Profile

Mohd Syazwan Abdullah, Ian Benest Andy Evans, Chris Kimble
Department of Computer Science Department of Computer Science

University of York University of York
Heslington, YORK, YO10 5DD Heslington, YORK, YO10 5DD

United Kingdom United Kingdom
syazwan,idb@cs.york.ac.uk andye,kimble@cs.york.ac.uk

Abstract – Knowledge-based systems (KBS) play an important
rôle in managing an organisation’s knowledge initiated
through knowledge management processes. These systems are
designed, and developed using knowledge engineering
techniques that are similar to software engineering, but have
more emphasis on the rôles of knowledge in the reasoning
process. However, there are no modelling techniques
available in this field and most of the techniques that are used
are usually adapted from the software engineering domain.
The Unified Modeling Language (UML) is a general-purpose
language that can be extended to model requirements from
domains that are not currently defined by it. One such
extension mechanism is the UML Profile which extends the
language at the meta-level without changing the main
construct of the language. This paper presents an initial
profile that can be used to design a KBS.

I. INTRODUCTION

Knowledge management is becoming an increasingly
important way of managing an organization’s knowledge
that is embedded in people, processes, information
generators and customers. The need to manage knowledge
in organisations has become the key factor for success in
the knowledge economy. Organisations around the globe,
are gearing up with knowledge management projects and
strategies to harvest the value of knowledge in order to
stay competitive and be innovative. The research in the
field of knowledge management concentrates mainly on
finding effective ways of managing knowledge through
social and management perspectives; since knowledge
resides in humans, it needs human techniques for its
management. Managing knowledge is a human-oriented
process, but technological tools such as knowledge-based
systems (KBS) can be used in support for such initiatives.

Knowledge-based systems are widely used to manage
knowledge from a systems-based approach. These systems
are built based on different task types such as diagnosis,
design, configuration design, assessment and so on, and
are considered to be knowledge intensive tasks. The
development process of a KBS is similar to that applied to
any general system; stages such as requirements gathering,
system analysis, system design, system development and
implementation are common activities. The stages in KBS
development are: business modelling, conceptual
modelling, knowledge acquisition, knowledge system
design and KBS implementation [1].

This paper is organised as follows: Section II describes
KBS and the field of knowledge engineering. Section III
gives an overview of the rôle of knowledge modelling and
the techniques that are currently used. Section IV describes
what is a UML profile, while Section V presents the initial

UML knowledge modelling profile constructed using
identified modelling concepts. Section VI concludes this
paper and indicates the direction for future work.

II. KNOWLEDGE-BASED SYSTEMS

A KBS is a software application with an explicit,
declarative description of knowledge for a certain
application [1]. There is no single dividing line that
differentiates a KBS and an information/software system,
as almost all contain knowledge elements in them [2]. An
information system is a set of interrelated components that
together collects, processes, stores, analyses, and
disseminates data and information in an organization. The
main difference is that in KBS it is assumed that
knowledge is represented in some explicit form, and hence
the increased importance of knowledge modelling [2].

KBSs are developed using knowledge engineering (KE)

techniques [3] that are similar to software engineering (SE)
techniques but have an emphasis on knowledge rather than
data or information processing. KE advocates an
engineering approach to the process of developing a KBS
by emphasising conceptual modelling of the system at the
design stage. Many KE methodologies have been
developed using models; for example, CommandKADS
[2], MIKE [4], Protégé [5], and KARL [4]. However, this
has not always been the case. Previously KBSs have been
built through the process of knowledge transfer [3] in
which the knowledge of the expert has been directly
transferred into the knowledge base in the form of rules.
The transfer approach is limited in operational use as
expert knowledge is hard coded within the system and this
creates a new problem if the knowledge base is to be
updated as changes require substantial effort [2] in
reconstituting the coded rules. The shift towards the
modelling approach has also enabled knowledge to be re-
used in different areas of the same domain [3] and has
resulted in reducing development costs [2].

III. KNOWLEDGE MODELLING

Knowledge modelling is used in knowledge acquisition

activities as a way of structuring projects, acquiring and
validating knowledge and storing knowledge for future use
[6]. Knowledge models are structured representations of
knowledge. They use symbols to represent pieces of
knowledge and their relationships. Knowledge models are:
(1) symbolic character-based languages – logic; (2)
diagrammatic representations – networks and ladders; (3)
tabular representations – matrices and frames and (4)
structured text – hypertext. There are five prominent

representation techniques widely used in developing
KBSs; they are attribute-value pairs, object-attribute-value
triplets, semantic networks, frames and logic. By analysing
the representation techniques, it will be noticed that they
have similar concepts to those adopted for object-oriented
modelling. Examples of these concepts are objects,
attributes, class, subclass, relationship, instances and
others. Though these concepts have different meanings in
different techniques, in most cases they refer to a similar
thing. This paves the way to consider using object-oriented
techniques as the standard means of representing them.

The importance of knowledge modelling in developing
KBSs has been discussed in [2]. They argue that models
are important for understanding the working mechanisms
within a KBS; such mechanisms are: the tasks, methods,
how knowledge is inferred, the domain knowledge and its
schemas. Using conceptual modelling, systems
development can be faster and more efficient through the
re-use of existing models for different areas of the same
domain. Therefore, understanding and selecting the
modelling technique that is appropriate for different
domains of knowledge will ensure the success of the KBS
being designed.

A. Modelling Techniques

Amongst the many techniques used to model

knowledge, the most common are CommonKADS and
Protégé 2000 and the Unified Modeling Language (UML).

CommonKADS has become the de facto standard for
knowledge modelling and is used extensively in European
research projects. A suite of models is at the core of the
CommonKADS methodology [2]. CommonKADS
incorporates an object-oriented development process and
uses UML notations such as class diagrams, use-case
diagrams, activity diagrams and state diagrams.
CommonKADS also has its own graphical notations for
task decomposition, inference structures and domain
schema generation [2]. Protégé was developed for domain
specific applications [5] at Stanford Medical Informatics.
Protégé 2000 is defined as “an extensible, platform-
independent environment for creating and editing
ontologies and knowledge bases” [7]. The Protégé 2000
knowledge modelling environment is a frame-based
ontology editing tool with knowledge acquisition tools that
are widely used for domain modelling. The Unified
Modeling Language (UML) together with the Object
Constraint Language (OCL) is the de-facto standard for
object modelling in software engineering as defined by the
Object Management Group (OMG). The UML is a
general-purpose modelling language that covers a wide
spectrum of different application domains. UML is also
incorporated in CommonKADS for knowledge modelling
purposes.

Recently it has become a trend for system developers

and researchers in KE to adopt object oriented modelling
in developing conceptual models for knowledge systems.
This has been broadly studied and reported in [8-10]. A
careful analysis of the literature shows that they have all
been influenced by CommonKADS – an approach that is

highly favoured, since it encourages the use of object-
oriented development and the notations from UML.

B.Current Trends

Although KBSs are developed using knowledge

engineering techniques, the modelling aspects of it are
largely dependent on software engineering modelling
languages. Most of the modelling techniques adopted a
mix of notations derived from different modelling
languages like UML, IDEF, SADT, OMT, Multi-
perspective Modelling and others. The object-oriented
paradigm has influenced systems development activities in
software engineering and this trend has also been reflected
in knowledge engineering methodologies such as
CommonKADS [2], Methodology and tools Oriented to
Knowledge-based engineering Applications (MOKA)
projects [10] and KBS developments in general as shown
in the works of [8, 11, 12, and 16]. However, the main
adopters of UML for knowledge modelling are
CommonKADS [2] and MOKA [10]. The MOKA
Modelling Language (MML) is an extension of UML that
represents engineering product design knowledge at a user
level for deployment in knowledge-based engineering
(KBE) applications. It provides default meta-models for
the product and design process so as to manage
engineering knowledge. However, it is an informal
extension to UML and does not fulfill the OMG’s
requirements for an extension mechanism; these are
presented in the section 4.

As there is no standard way of modelling knowledge

systems, there is a need to extend the use of standardised
software engineering modelling techniques such as UML
for knowledge modelling. This promotes the use of a
common modelling language, so that the vision of
integration, reusability and interoperability among
enterprise systems will be achieved. To use UML for
formally modelling knowledge-based systems, one
suggested way is to enhance it by adopting the extension
mechanism proposed by OMG known as profiles.

IV. PROFILE EXTENSION MECHANISM

The OMG [13] has defined two extension mechanisms

for UML: profiles and meta-model extensions. Profiles are
sometimes referred to as the “lightweight” extension
mechanism of UML [14]. It contains a predefined set of
Stereotypes, TaggedValues, Constraints, and notation
icons that collectively specialize and tailor the UML for a
specific domain or process. The main construct in the
profile is the stereotype that is purely an extension
mechanism. In the model, it is marked as <<stereotypes>>
and has the same structure (attributes, associations,
operations) defined by the meta-model that describes it.
However, the usage of stereotypes is restricted as changes
to the semantics, UML structure and the introduction of
new elements to the meta-model are not permitted [15].

The “heavyweight” mechanism for extending UML is
known as the meta-model extension which is defined
through the Meta-Object Facility (MOF) specification [16]
and which involves the process of defining a new meta-

model. Using this extension, new metaclasses and meta-
constructors can be added to the UML meta-model. This
extension is a more flexible approach as new concepts may
be represented at the meta-model level. The difference
between the profile and meta-model extensions comes
from the restrictions on profiles in extending the UML
meta-model [15]. These restrictions impose that profile
based extensions must comply with the standard semantics
of the UML meta-model. However, this restriction is not
applicable to the MOF based extensions, which can define
a new meta-model. The meta-model approach however, is
also called a profile.

V. UML KNOWLEDGE MODELLING PROFILE

The scope of the profile is adapted from [17]. The aim

of the UML Knowledge Modelling Profile is to define a
language for designing, visualizing, specifying, analyzing,
constructing and documenting the artifacts of knowledge-
based systems. It is a knowledge modelling language,
which may be used with all major object technologies and
applied to knowledge-based systems in various application
domains and task types. The UML profile is based on the
UML 2.0 specifications and is defined by using the meta-
modelling extension approach of UML. It is being
designed with the following principles in mind:

• UML integration: as a real UML based profile, the

knowledge modelling profile is defined based on
the meta-model provided in the UML superstructure
and follows the principles of UML profiles as
defined in the UML 2.0.

• Reuse and minimalism: wherever possible, the
knowledge modelling profile makes direct use of
the UML concepts, extends them, and adds new
concepts only where needed.

The main thrust in this section refers to the

CommonKADS methodology for KBS development [2]
and related discussion in [18]. Tasks are the main
categorization of action that need to be performed by the
KBS which typically refers to “what we want the system to
do”. Current studies on extending UML to model
knowledge only concentrates on certain task types such as
product design in MOKA [10] and UML-based product
configuration design [8]. There are no specific studies
being conducted in creating a generic profile that can be
used for different task types; and research now underway
at York is focusing on this work. A review and analysis of
task types based on the literature [2] shows that the
creation of a generic profile is possible if the extension
used is defined in general terms with no reference to any
task type or inference strategy when executing the task.

In [19] there are suggestions as to how to construct a

modelling language. This involves the creation of an
abstract syntax model, identifies and models concepts,
specifies well-formed rules and operations, and finally
validates and tests the profile. The first step in creating the
meta-model of the knowledge modelling profile is to build
its abstract syntax model. The syntax model is used to
describe the concepts of the profile and the relationships

between concepts. The concepts will provide a vocabulary
and grammar for constructing models in the profile [19].

The following knowledge modelling concepts have
been identified from the literature [2], [18] and are
itemised in Table 1. These concepts have been known for
some years and they provide a firm foundation on which to
base the model.

TABLE I: Knowledge Modelling Concepts

Modelling Concept Description
Concept (class) Class that represents the category of

things
Inferences Describes the lowest level of

functional decomposition on carrying
out primitive reasoning steps

Inference method Method for implementing the
inference

Transfer function Transfers information between the
reasoning agent and external entities
(system, user)

Task Defines the reasoning function
Task method Describes the realization of the task

through subfunction decomposition
Static knowledge rôle Specifies the collection of domain

knowledge that is used to make the
inference

Dynamic knowledge rôle Run-time inputs and outputs of
inferences

Rule type Categorization and specification of
knowledge

Knowledge base Collection of data stores that contains
instances of domain knowledge types

Rule Expressions about an attribute value
of a concept

The abstract syntax of the knowledge modelling

language has been built using these modelling concepts
and the CommonKADS language is adopted for specifying
knowledge models that are defined in the BNF notation
[2]. The BNF notation has been translated into a UML
model. In its current form it is a model of the abstract
syntax of a knowledge modelling language, becoming a
complete model of the language: a meta-model. Unless it is
viewed as an extension of UML, it is not a profile, but just
a plain meta-model. Efforts are currently focused on
developing this meta-model further by defining well-
formedness rules, syntax and semantics for the language
and mapping it to the core UML. The initial knowledge
modelling profile is composed using four main packages
based on their rôle and relationship in modelling KBSs. It
consists of the Knowledge Model package, Task
Knowledge package, Inference Knowledge package and
Knowledge package. These packages form the core of the
knowledge modelling language and is shown in Figure 1 as
the knowledge modelling profile.

Knowledge Modelling Profile

Inference KnowledgeTask Knowledge

Knowledge
Knowledge Model

Domain
Knowledge

Concepts Relations

uses

access

Rule Type

Knowledge Base

Mathematical Model

Fig. 1. Knowledge Modelling Profile Core Package

For reasons of space, this exposition concentrates on
showing the concept, task knowledge, inference, rule type
and knowledge base package aspects of the profile. The
Concept package within the Knowledge Model package
describes the concept of the profile. Concept here
represents class. This package is shown in Figure 2.

Concept

Concept

attr: isDisjoint: Boolean
 isCom plete: Boolean

Supertype

Axiom Has-part

subtype of

attr: isDisjoint: Boolean
 isCom plete: Boolean

Viewpoint

<ordered> part-of

Cardinality

Equation Role Cardinality

Differentiation ofDefault ValueType Range

Prim itive-Range

Number
Range

Integer
Range

attr: Num ber, Integer, Natural, Real,
Im age, String, Boolean, Universal, Text]

Prim itive-Type

Value ListType

Value-Specification

nam e:

Attribute
*<ordered>

User Defined Type

*
has-parts

*

viewpoints

*

*

type : { nom inal I ordinal}

Value-Type

Value
*

0..1

Fig. 2. Concept Package

The Task Knowledge package of the profile describes
the task and task method in detail. This package is shown
in Figure 3.

T ask K now ledge

T a sk K n o w le d g e

T a sk

In fe re n ce K n o w le d ge T a sk E le m e n t

a ttr: nam e

D o m a in

a ttr: nam e

G o a l R o le

O u tp u tIn p u t

< orde red> < orde red>

T a sk M e th o d

S p e c if ica tio n

R o le D e sc rip tio n

rea lizes

T a sk D e co m p o s itio n A ssu m p tio n sC o n tro l S tru c tu re s

In te rm e d ia te

R o le

< orde red>

S ta te m e n t

R o le O p e ra tio n

P se u d o -C o d e

C o n d itio n a l
S ta te m e n t

C o n tro l L o o p

R o le

P ro c -in p u t

B in a ry

F u n c tio n C a ll

P ro c -o u tp u t

R o le E xp re ss io n

U n a ry R o le

F u n ctio n

use

*

T a sk

In fe re n ce

1

ro les *

task ro le : s tr ing

R o le D esc rip tion

ro les

*

T a sk R o le

* *

*

* *

Fig. 3. Task Knowledge Package

The Inference Knowledge package of the profile

describes the inference, knowledge rôle and transfer
function in detail. This package is shown in Figure 4.

Inference Knowledge

Inference Knowledge

Transfer FunctionInference

Use Construct

Obtain

TypeSpecification

Role

Dynamic
Knowledge Role

attr: name

Operation Type

Static
Knowledge Role

Provide RolePresentReceive

Dynamic
knowledge role

Domain
mapping

Static Domain
Reference

Dynamic Domain
Reference

Domain
Construct Type Knowledge Base

Set-of Domain
Construct Type

List-of Domain
Construct Type

* *

*

0..1

roles *

0..1
*

type: {static, dynamic}

Knowledge Role
roles

*

domain mapping

referencereference

*

* *

Fig. 4. Inference Knowledge Package

The Knowledge package of the core profile consists of
three packages: the Rule Type package, the Knowledge
Base package and the Mathematical Model package (not
presented in the paper). The Rule Type package within the
Knowledge package describes the modelling of rules. This
package is shown in Figure 5.

R u le T y p e

R u le -T y p e -B o d yR u le T y p e

C o n s tra in t-
R u le -T y p e

Im p lic a t io n -
R u le -T y p e

C o n s e q u e n t

C a rd in a lity

U s e r D e f in e d
T y p e

U s e r D e f in e d
T y p e

A n te c e d e n t

U s e r D e f in e d
T y p e

C a rd in a lityC a rd in a lity

c o n s tra in t

n a m e : s tr in g

C o n n e c tio n S y m b o l

Fig. 5. Rule Type Package

The Knowledge Base package within the Knowledge
package describes the modelling of the knowledge base
that represents instances of knowledge. This package is
shown in Figure 6.

Figure 7 shows part of the knowledge modelling profile
used to represent the assessment task based on the template
specified in the housing application case study discussed in
[2]. A brief description of the case study is as follows:
Rental residences are allocated to potential applicants
based on four types of eligibility criteria. First, people have
to apply for the right residence category. Second, the size
of the household of the applicant needs to be consistent
with the requirements on minimum and maximum
habitation of a certain residence. The third criterion is that
there should be a match between the rent of the residence
and the income of the applicant. Finally, there can be
specific conditions that hold for one particular residence.
This example only concentrates on showing the abstracting
process of the residence application (referred to as case-
description which is a domain-independent term). The
purpose of this abstraction process is to provide useful

categories of cases that need to be distinguished for
assessment purposes. Here the assessment task will
abstract all cases into two groups, this allows a relatively
large set of cases to be categorised. The example here is
translating the original knowledge model (which is
described in the textual knowledge modelling language of
CommonKADS) to a UML object model based on the
abstract syntax model shown earlier in this section.
The profile packages used here are the domain knowledge,
inference knowledge and task knowledge. There are two
concepts which represent the residence class and applicant
class, and between these concepts a binary relation named
residence application is created. For reasons of space, only
one particular attribute related to each concept and its
associated axioms are shown (in the upper part of the
diagram in Fig. 7).

Knowledge Base

Knowledge Base

Variable Expression Attribute

Variable Declaration

Annotation

Has-part

Type Of

Dimension Role

Type Operator

Part
Operator

Rule Type
Expression

Equation

Rule Type

Domain schema

Knowledge Base
Expression

Knowledge
Base Use

Variable Type

Rule Type
Instance

Value

Tuple
User Defined

Type Role

Value

role

<ordered>

<ordered>

argument-1: Instances
argument-2: Iinstances
arguments

User Defined Type

<ordered>

name: string

Attribute Instance

value

name: string

Instance

instance of

*

*

* * *

Concept

name: string

Attribute Instance

value

instance of

Relation

Fig. 6. Knowledge Base Package

The task knowledge package (shown as Task Knowledge
in bold in Fig. 7) will execute the task of abstracting the
cases by adding case abstraction to the case data. The task
will be realised by the task method “abstract case”. The
task method can be decomposed into other tasks or
inferences. In this example it is decomposed into inference
“abstract”. The input for this task is “case descriptions”
and the output will be “abstracted case”. The control
structure will specify how the abstraction process will be
performed by the task method. All this is shown in the
lower part of the diagram. The inference knowledge
package (shown as Inference Knowledge in bold) will
carry out the reasoning process of abstracting the cases.
The knowledge rôle here will have the same input and
output as the task, but with inferences; they are referred to
as dynamic input/output. The reasoning process will use
the “abstraction knowledge” which is a static knowledge

rôle. This knowledge is accessed from the knowledge base
“Systems Description”. This is shown in the middle part of
Fig. 7 on the right.

In knowledge modelling, all the processes and actions
carried out by the system is specified in detail to help the
KBS developer understand the working mechanism of the
system being designed.

VI. CONCLUSIONS

Managing knowledge through knowledge-based systems is
an important part of an enterprise’s knowledge
management initiatives. The process of constructing KBSs
is similar to other software systems with conceptual
modelling playing an important rôle in the development
process. Software engineering has adopted UML as a
standard for modelling, but the field of knowledge
engineering is still searching for the right technique. UML
could be adopted for knowledge modelling as well. While
UML in its current state has its limitations, it is an
extensible language and thus can be used to support the
knowledge modelling activity through the profile
mechanism. Developing a profile is not an easy task and
involves many steps. The next step in this research is to
specify the well-formed rules and operations using OCL,
then validate the profile using a UML compliant modelling
tool and finally test real-life KBS requirements through
case studies in a number of knowledge-intensive domains.

VII. ACKNOWLEDGMENT

The authors gratefully acknowledge the fellowship from

Universiti Utara Malaysia in conducting this research

VIII. REFERENCES

[1] P.H.Speel, A. Th. Schreiber, W. van Joolingen, G.

van Heijst and G. Beijer, Conceptual Models for
Knowledge-Based Systems, in Encyclopedia of
Computer Science and Technology. 2001, Marcel
Dekker Inc, New York.

[2] G. Schreiber, H. Akkermans, A. Anjewierden, R. de
Hoog, N. Shadblot, W.V. de Velde and B. Wielinga,
Knowledge Engineering and Management: The
CommonKADS Methodology. 1999, Massachusetts:
MIT Press.

[3] R. Studer, R.V. Benjamins, and D. Fensel,
Knowledge Engineering: Principles and methods.
Data & Knowledge Engineering, 1998. 25: p. 161-
197.

[4] J. Angele, D. Fensel, D. Landes and R. Studer,
Developing Knowledge-Based Systems with MIKE.
Journal of Automated Software Engineering, 1998.
5(4): p. 389-418.

[5] W.E. Grosso, H. Eriksson, R.W. Fergerson, J.H.
Gennari, S. Tu and M.A. Musen, Knowledge
Modelling at the Millennium (The Design and
Evolution of Protege 2000) SMI Report SMI-1999-
0801. 1999, Stanford Medical Institute.

[6] Milton, N., Types of Knowledge Models. 2002.
Accessed at http://www.epistemics.co.uk/Notes/90-0-
0.htm

n a m e : " H o u s in g "

: K n o w le d g e M o d e l

n a m e : " a s s e s s m e n t s c h e m a "

:D o m a in S c h e m a

m in n u m in h a b ita n ts < = m a x n u m in h a b ita n ts

:e q u a t io n

n a m e : " re s id e n c e d o m a in "

:D o m a in K n o w le d g e

:D o m a in c o n s t ru c t

n a m e : " n o m in a l"

: ty p e

n a m e :"s u b s id y ty p e "

:a t t r ib u te

n a m e : " s u b s id y v a lu e
ty p e "

:v a lu e ty p e
n a m e : " re s id e n c e "

:C o n c e p t

n a m e : "A p p l ic a n t "

:C o n c e p t

:A x io m s

n a m e : { s u b s id iz a b le , f re e s e c to r }

v a lu e l is t

n a m e : "a p p l ic a t io n d a te "

:a t t r ib u te s
n a m e : '" re s id e n c e a p p l ic a n t "

:B in a ry re la t io n

n a m e :" a p p lic a n t "

:A rg u m e n t

: d a te

:v a lu e
ty p e

:A x io m s

a p p lic a n t .a g e = F L O O R (T O D A Y () - a p p l ic a n t b ir th d a te

:e q u a t io n

n a m e : "o rd in a l"

: t y p e

n a m e : " a g e c a te g o ry "

:a t t r ib u te

n a m e : "a g e c a te g o ry v a lu e "

:v a lu e ty p e

n a m e : { 'u p to 2 2 ', '2 2 -6 4 ', '6 5 + '}

v a lu e l is t

n a m e : " re s id e n c e "

:A rg u m e n t

v a lu e : "0 + "

:c a rd in a lit y

v a lu e : "0 -2 "

:c a rd in a li ty

a rg u m e n t 1 a rg u m e n t 2

n a m e : " a s s e s s m e n t in fe r e n c e "

: In fe r e n c e K n o w le d g e

n a m e = "a b s t ra c te d c a s e "
ty p e = "d y n a m ic "

:K n o w le d g e R o le

:U s e C o n s t ru c t

n a m e = "a b s t ra c t io n k n o w le d g e "
ty p e = "s ta t ic "

:K n o w le d g e R o len a m e = " c a s e d e s c r ip t io n "
ty p e = " d y n a m ic "

:K n o w le d g e R o le

n a m e = "R e s id e n c e A p p lic a n t "

:D o m a in C o n s t ru c t T y p e

n a m e = "R e s id e n c e A b s t ra c t io n "

:D o m a in C o n s t ru c t T y p e

n a m e = " R e s id e n c e A p p lic a n t "

:D o m a in C o n s t ru c t T y p e

n a m e = " S y s te m
D e s c r ip t io n "

:K n o w le d g e B a s e

n a m e = " a b s t ra c t "

: In fe re n c e

:R o le s
in p u t= " c a s e d e s c r ip t io n "
o u tp u t= " a b s t ra c te d c a s e "

: D y n a m ic K n o w le d g e R o le

s ta t ic = "a b s t ra c t io n
k n o w le d g e "

S ta t ic K n o w le d g e R o le

n a m e = " a s s e s s m e n t ta s k "

: T a s k K n o w le d g e

ta s k = "a b s t ra c t c a s e "

:T a s k E le m e n t

n a m e = " a b s t ra c t c a s e "

:T a s k

n a m e = " a b s t ra c t
a p p lic a t io n d a ta "

:D o m a in

d e s c r ip t io n = " A d d c a s e a b s t ra c t io n to c a s e d a ta "

:G o a l

n a m e = " a b s t ra c t
a p p lic a t io n d a ta "

:R o le

n a m e = " c a s e d e s c r ip t io n "

: In p u t

n a m e = "a b s t ra c te d c a s e "

:O u tp u t

n a m e = " a b s t ra c t c a s e "

:T a s k M e th o d

:C o n t ro l S t ru c tu re s

d e s c r ip t io n = "D O -W H IL E L o o p "

:P e s u d o -c o d e

r o le s

d o m a in m a p p in gd o m a in m a p p in g

d e c o m p o s i t io n

Fig. 7. Housing application assessment example

[7] Protege, Protege Frequently Asked Question. 2002.

Accessed at http://portege.stanford.edu/faq.html
[8] A. Felfernig, G.E. Friedrich, and D. Jannach.

Generating product configuration knowledge bases
from precise domain extended UML models. in 12 th
International Conference on Software Engineering
and Knowledge Engineering (SEKE'00). 2000.
Chicago, USA.

[9] A. Manjarres, S. Pickin, and J. Mira, Knowledge
model reuse: therapy decision through specialisation
of a generic decision model. Expert Systems with
Applications, 2002. 23(2): p. 113-135.

[10] M. Stokes, Managing Engineering Knowledge:
MOKA - Methodology for Knowledge Based
Engineering Applications. 2001, London, UK:
Professional Engineering and Publishing Limited.

[11] G. Simic and V. Devedzic, Building an intelligent
system using modern internet technologies. Expert
Systems with Applications, 2003. 25: p. 231-246.

[12] A. Felfernig, G.E. Friedrich and D. Jannach, UML as

Domain Specific Language for the Construction of
Knowledge Based Configuration Systems.
International Journal of Software Engineering and
Knowledge Engineering, 2000. 10(4): p. 449-469.

[13] OMG, Unified Modeling Language Specification
(version 1.4). 2001.

[14] OMG, Requirements for UML Profile. 1999, Object
Management Group: Framingham, MA, U.S.A. p. 8.

[15] J.E. Perez-Martinez, Heavyweight extensions to the
UML meta-model to describe the C3 architectural
style. ACM SIGSOFT Notes, 2003. 28(3).

[16] OMG, MOF Specification version 1.4. 2002.
[17] OMG, UML 2.0 Testing Profile specification. 2003.
[18] M.S. Abdullah, Extending UML Using Profile for

Knowledge-Based Systems Modelling. 2003,
Department of Computer Science, University of
York: York.

[19] T. Clark, A. Evans, P. Sammut and J. Willans, Meta-
modelling for Model-Driven Development (draft): To
be published. 2004.

	Modelling Concept

