
Modelling Knowledge Based Systems Using
The eXecutable Modelling Framework (XMF)

Mohd Syazwan Abdullah1,2, Andy Evans1
1Department of Computer Science

University of York, Heslington, YO10 5DD
York, United Kingdom

syazwan, andye, idb, paige, kimble @cs.york.ac.uk

Ian Benest1, Richard Paige1, Chris Kimble1
2Faculty of Information Technology

Universiti Utara Malaysia
06010 Sintok, Kedah DA, Malaysia

pathma @webmail.uum.edu.my

Abstract�There is no standardised approach to modelling

knowledge-based systems; where modelling is adopted, the
techniques used are those from the software engineering domain.
These tend to be used in an ad hoc way and are highly dependent
on the experience of the knowledge engineers. This paper
presents the adoption of a profile mechanism for the design of
knowledge-based systems. The profile is created using the meta-
model extension approach of UML and is based on XMF
(eXecutable Meta-modelling Framework). XMF is an extension
to the existing standards for meta-models: MOF, OCL and QVT.
XMF offers an alternative approach in profile design which
allows modification or the addition of new modelling constructs
that are easily integrated with the core meta-model of UML.

Keywords�knowledge-based system; XMF Profile; knowledge
modelling; executable models;

I. INTRODUCTION
Knowledge-based systems (KBS) are developed using

knowledge engineering (KE) techniques [1], which are similar
to those used in software engineering (SE), but have an
emphasis on knowledge rather than on data or information
processing. As such, they inherently advocate an engineering
approach to the process of developing a KBS. Central to this
process is the conceptual modelling of the system during the
analysis and design stages of the development process. And
many knowledge engineering methodologies have been
developed with an emphasis on the use of models, for
example: CommonKADS [2], MIKE [3], Protégé [4], and
KARL [3].

In first generation expert systems, the knowledge of the
expert (or experts) was captured and translated into a set of
rules. This was essentially, a process of knowledge transfer
[3]. The disadvantage of this approach is that the captured
knowledge in the form of hard-coded rules within the system
provides little understanding of how the rules are linked or
connected with each other [2]. As a result, when the
knowledge base needs updating, there is a substantial effort
required to ensure that the knowledge base remains correct.
KE is no longer simply a means of mining the knowledge
from the expert�s head [2]. It now encompasses �methods and
techniques for knowledge acquisition, modelling,
representation and use of knowledge� [2].

This paper demonstrates a systematic approach to
modelling and designing KBSs in a purely object-oriented
fashion through the use of profile mechanism. The novelty of
the system design lies in the profile that is used to create it.
The profile is constructed using compliant standards of
modelling software systems by adopting the XMF approach.
XMF provides tool support for designing and verifying
models as well as executing the models. It is one of the latest
techniques in modelling and this work demonstrates the use of
this approach.

This paper is organised as follows: Section II describes

and discusses the KBS design process and the use of
conceptual modelling. Section III gives an overview of the
Unified Modeling Language (UML) and profile extension
mechanism. Section IV explains the profile design process
using the XMF approach, while Section V illustrates how the
KBS Modelling Profile can be used as part of the development
of a KBS. Section VI concludes, indicating the direction for
future work.

II. KNOWLEDGE-BASE SYSTEM DESIGN
Knowledge engineering is no longer simply a means of

mining the expert�s understanding and appreciation of a
domain of knowledge [2]. It now encompasses �methods and
techniques for knowledge acquisition, modelling,
representation and use of knowledge� [2]. Schreiber et al [2]
argue that models are important for understanding the working
mechanisms within a KBS; such mechanisms are: the tasks,
methods, how knowledge is inferred, the domain knowledge
and its schemas. A further benefit arising from the shift
towards the modelling approach is that fragments of
knowledge may be re-used in different areas of the same
domain [3] making systems development faster and more
efficient. In the past, most knowledge systems had to be
developed afresh each time a new system was needed, and it
could not interact with other systems in the organization. So
the paradigm shift towards a modelling strategy has resulted in
reducing development costs [2].

Although a KBS is developed using knowledge
engineering techniques, the modelling aspects of it are largely
dependent on software engineering modelling languages. The
development process of a KBS is similar to that used in any
general system development; stages such as: requirements

Proceedings of the 2004 IEEE
Conference on Cybernetics and Intelligent Systems
Singapore, 1-3 December, 2004��

0-7803-8643-4/04/$20.00 © 2004 IEEE 1054

gathering, system analysis, system design, system
development and implementation are common activities. The
stages in KBS development are: business modelling,
conceptual modelling, knowledge acquisition, knowledge
system design and KBS implementation. Most of the
modelling techniques adopt a mix of notations derived from
different modelling languages such as: UML, IDEF, SADT,
OMT, Multi-perspective Modelling and others. The object-
oriented paradigm has influenced systems development
activities in software engineering and this trend has also been
reflected in knowledge engineering methodologies such as:
CommonKADS [2], MOKA [6] and KBS developments in
general as described by Felfernig et al. [7].

As there is no standard way of modelling knowledge
systems, there is a need to extend the use of standardised
software engineering modelling techniques such as UML for
knowledge modelling. This promotes the use of a common
modelling language, so that the vision of integration,
reusability and interoperability among enterprise systems will
be achieved.

III. UNIFIED MODELING LANGUAGE
The Unified Modeling Language (UML) together with the

Object Constraint Language (OCL) is the de-facto standard for
object modelling in software engineering as defined by the
Object Management Group (OMG). The UML is a general-
purpose modelling language that may be used in a wide
spectrum of different application domains. The OMG [8] has
defined two mechanisms for extending UML: profiles and
meta-model extensions.

Profiles are sometimes referred to as the �lightweight�
extension mechanism of UML [9]. A profile contains a
predefined set of Stereotypes, TaggedValues, Constraints, and
notation icons that collectively specialize and tailor the UML
for a specific domain or process. The main construct in this
profile is the stereotype that is purely an extension
mechanism. In the model, it is marked as <<stereotype>> and
has the same structure (attributes, associations, operations) as
defined by the meta-model that describes it. However, the
usage of stereotypes is restricted, as changes in the semantics,
structure, and the introduction of new concepts to the meta-
model are not permitted [10].

The �heavyweight� extension mechanism for UML
(known as the meta-model extension) is defined through the
Meta-Object Facility (MOF) specification [11] which involves
the process of defining a new meta-model. Using this
extension, new meta-classes and meta-constructors can be
added to the UML meta-model.

The �heavyweight� extension is a more flexible approach
as new concepts may be represented at the meta-model level;
while the �lightweight� extensions are not able to extend the
UML meta-model, since they must comply with the standard
semantics of the UML meta-model[11]. However, this
extension is much more difficult to use compared with
stereotypes. It is unfortunate that both extensions are known as
profiles.

The work presented in this paper incorporates both the
lightweight and heavyweight extension mechanisms of UML

using the XMF approach when designing the profile. This is
an alternative approach as it allows both mechanisms to be
utilised; this contrasts with standard UML that restricts this
type of combination. A brief introduction of XMF is given in
Section IV.

IV. PROFILE DESIGN � THE XMF APPROACH
The XMF (eXecutable Meta-modelling Language) is an

object-oriented meta-modelling language, and is an extension
to existing standards for meta-models such as MOF, OCL and
QVT, which are also defined by OMG. XMF exploits the
features of these standards and adds a new dimension that
allows them to be executable using an associated XMT
software tool. The most comprehensive use of these standards
are seen in the UML in which its� meta-models are described
using MOF. Details of XMF can be found in [12].

The XMF approach to creating a profile can be divided
into three steps: the derivation of an abstract syntax model, a
description of the semantics, and a presentation of the profile�s
concrete syntax.

A. Abstract Syntax
The abstract syntax model describes the concepts in the

profile and their associations. It defines the rules that
determine its validity. The processes involved in creating the
abstract syntax model are:
• Identifying the concepts including the related rules. Reusing

an existing BNF definition of the profile domain is an
alternative at this stage.

• Modelling concepts � this involves the process of creating an
abstract syntax model using the identified concepts.

• Defining the well-formed-ness rules of the profile in OCL �
this will help in ruling out illegal models.

• Defining the operation and the queries related to the profile.
• Validating and testing the profile using an object diagram and

relevant tools.

B. Semantics
The semantics describe the meanings of concepts within the
profile in terms of behaviour, static properties or how it may
be translated into another language. The semantics are a core
part of the profile�s meta-model and replace formal
(mathematical) methods that are often difficult to comprehend
by the majority of users and with which it would be difficult to
describe the interrelationships within the meta-model. In XMF
there are four types:
• Translational � concepts in one language are translated into the

concepts of another language that has precise semantics.
• Denotational � modelling the mapping to semantic domain

concepts
• Operational � modelling the operational behaviour of language

concepts.
• Extensional � extending the semantics of existing language

concepts.

1055

C. Concrete Syntax
The concrete syntax is a means of presenting the abstract

syntax to end users of the profile, using either textual or
diagrammatic forms.
• The textual form of the profile is modelled using Extended

Backus-Naur Form (EBNF).
• The diagrammatic form, which involves synchronised

mapping between the modelling elements and the diagram
elements (boxes, lines and shapes). This is a new technique
introduced into the meta-model by XMF.

V. KNOWLEDGE MODELLING PROFILE

The scope of the profile is adapted from [13]. The aim of
the XMF Knowledge Modelling Profile is to define a language
for designing, visualizing, specifying, analysing, constructing
and documenting the artefacts of knowledge-based systems.
The profile is based on the XMF specifications and is defined
using the meta-class sub-classing approach of the XMF core
meta-model, XCore. The knowledge modelling profile is
designed using the XMF approach described earlier in Section
IV. This paper only concentrates on the creation of the
abstract syntax model of the profile. It excludes the processes
of defining operations, queries and tool validation for the
profile, as these discussions are more appropriate when
executing the models and this is not the primary motivation of
this paper.

A. Abstract Syntax � Concept Identification
The main thrust in this section refers to the CommonKADS

methodology for KBS development [2] and related discussion
in [14]. Tasks are the main categorisation of action that needs
to be performed by the KBS; typically this refers to the �what
we want the system to do�. Currently, the development of
profiles for modelling knowledge concentrates only on certain
task types such as product design in MOKA [6] and product
configuration design [7]. As there has been no specific study
into creating a generic profile that can be used for different
task types, this is the focus of work now underway at the
University of York. The following important knowledge
modelling concepts have been identified from the literature
[2], [14] and are itemised in Table 1.

TABLE I. KNOWLEDGE MODELLING CONCEPTS

Modelling
Concepts

Descriptions

Concept (Class) Class that represents the category of things related to
knowledge elements

Inference Describes the lowest level of functional decomposition
on carrying out primitive reasoning steps

Transfer
Function

Transfers information between the reasoning agent and
external entities (system, user)

Task Defines the reasoning function and invokes the
corresponding task method

Task Method

Describes the realisation of the task through sub-
function decomposition which includes the invocation
of operations on dynamic role, inferences and transfer
functions

Static
Knowledge Role

Specifies the collection of domain knowledge that is
used to make the inference

Dynamic
Knowledge Role Run-time inputs and outputs of inferences

Rule Type Categorisation and specification of knowledge

Rule Expressions about an attribute value of a concept

Knowledge Base Collection of data stores that contains instances of
domain knowledge types

B. Abstract Syntax- Syntax Model
The abstract syntax of the knowledge modelling language

has been derived using the modelling concepts shown in Table
1. The CommonKADS language has been adopted for
specifying knowledge models that are defined in the BNF
notation [2]. That BNF description has been translated into a
UML model. In its current form it is a model of the abstract
syntax of a knowledge modelling language, becoming a
complete model of the language: a meta-model. Due to the
size, and repetitive nature of the concepts described using
BNF, and the complexity of the model, it has been condensed
to show only the important features of modelling knowledge
concepts.

Shown in Fig. 1 is the knowledge modelling profile that is
composed of four main packages based on their role and their
interrelationships. It consists of the Domain Concept package,
Inference package, Knowledge Base, and Rule Type package.

Figure 1. Knowledge Modelling Profile Core Package

The Domain Concept package within the Knowledge
Modelling package describes the concept constructs of the
profile that are related to knowledge elements. This package is
shown in Fig.2.

Figure 2. Domain Concept Package

Knowledge Modelling Profile

Inference
Knowledge

Base

Rule TypeDomain
Concept has

uses

access

stored

Dom ain Concept Package

Tuple

Axiom

Concept

C lass
(From XM F)

Mathem atical
Model

Constraint
(From XMF)

ro le

*

rules

*axiom s

Operation
(From XMF)

*

Dynam ic Role

1056

The Inference package of the profile describes the inference,
inference method, task, task method, transfer function and
both the static and dynamic knowledge roles. The inference
package plays a pivot role in designing KBS as it defines the
inference structure of the system, the type of knowledge used
in the reasoning process and the task associated with the
execution of the inference. An important point to note here is
that the KBS is designed independently of the target
implementation platform and inference engines, overcoming
the difficulties of reusing implementation specific designs.
This package is shown in Fig.3.

Inference Package

Concept

name: String
input: String
output: String

Task

Operation
(From XMF)

name: String
decomposition: String
intermediate role: string

Task Method

name: String
dynamic input: String
dynamic output: String
static role: String

Inference

communicationtype:
{provide, receive,
obtain, present}

Transfer Function

input: String

Static Roleinput: String
output: String
domain mapping: String

Dynamic Role

Knowledge
BaseOperation

(From XMF)

method
1..*

0..1

*roles
roles

<<ordered>>
0..1

*

knowledge
elements

*

input

output

1..*

1..*

*

1..*

1..*

1..*

Figure 3. Inference Package

The Knowledge Base package of the profile describes the
modelling of a knowledge base that represents instances of
knowledge elements (instances of rule type) of the domain
concepts. These instances are important as they contain the
actual knowledge on which the KBS reasoning process is
based. Knowledge elements within the knowledge base are
accessed by an inference through static role. This package is
shown in Figure 4.

Figure 4. Knowledge Base Package

The Rule Type package (shown in Fig. 5) within the profile
describes the modelling of rules. There are three types of
rules: constraint rule, implication rule and decision table.
Decision table is an addition to rule type that is introduced
here, as certain rules are in the form of a decision table.
Currently, we are only concentrating on rule-based KBS and
Case-Based Reasoning (CBR) is out of the profile scope.

Figure 5. Rule Type Package

C. Abstract Syntax- Model Extension
The knowledge modelling profile concept extends the

existing meta-models of XMF by defining the profile�s
abstract syntax. There are five places where the profile can be
viewed as an extension to XMF and these are: Class,
Operations, Container, Table and Constraints from the Core
XMF meta-model.

The knowledge modelling class concept is viewed as a
special class that is a subclass of the XMOF Class. This
enables the concept to inherit all the features of a class and
allows it to define additional constraints such as �concepts do
not have any operations or methods�. The implication rule
type is also another example of this.

 Constraint class is another area where we subclass XMF
meta-model to incorporate profile concepts such as axioms,
rule type expression and constraint rule type. All these
concepts need the ability to express constraints and this class
allows for constraint expressions. For example, axioms are
often used to define specification of a (mathematical)
relationship that is defined to be true, and the constraint class
is a natural choice as it allows constraint expressions of
axioms.

The inference package of the profile (which has the task,
task method, inference, dynamic role, static role, and the
transfer function concepts) can be viewed as a subclass of an
XMF Operations class. The same is true for the mathematical
model in the domain concept package. The operation class of
XMOF allows operations related to objects to be expressed,
such as execute inference call from task method, execution of
the inference process and accessing the knowledge in the
knowledge base through static role.

Knowledge base is viewed as a subclass of the Container
class of XMF. It has a �content� slot that is a table. This is a
natural choice for a subclass as the knowledge base is actually
a collection of tables grouped together in order to store rule
type instances.

The table class of XMF is extended to incorporate the
profile�s concepts of tuple and decision table (in which is
stored rule type instances). The table class is a new feature in
the meta-modelling that was introduced by XMF

Rule Type

Rule Type

Decision Table

Constraint Rule
Type

Table
(From XMF)

Constraint
(From XMF)

name: String
antecedent: String
consequent: String
connection: String

Implication Rule Type

Class
(From XMF)

*
*

rules rules
*

rules

Operation
(From XMF)

Knowledge Base Package

Rule Type

Knowledge Base

Rule Type Expression

Tuple

input: String

Static Role Table
(From XMF)

Container
(From XMF)

*
1..*

1..*

1..*

knowledge
elem ents

tuples

expressions

Constraint
(From XMF)

1057

D. Abstract Syntax- Well-formed-ness Rules
The following well-formed-ness rules are defined for each

of the modelling concepts that have been introduced in the
profile.

TABLE II. WELL-FORMED-NESS RULES

Class Well-formed-ness rule descriptions

Concept

Concept doesn�t have any operations/methods.
Concept must exist as a representation of the object that
has knowledge associated with it.

Axiom Axiom values are defined by the concept�s attribute.

Task Task must exist.
Task must have unique name.

Task Method

Task method must exist.
Task method must have unique name.
Task method may define additional task roles to store
temporary reasoning results.
Task method decomposition can either be another task, an
inference, or a transfer function.

Inference

Inference must exist.
Inference must have unique name.
Inference must have dynamic input and output.
Inference may not have static input.

Transfer
Function

Transfer function type may only be: obtain, receive, present
and provide.

Dynamic role Dynamic role must exist
Dynamic role must have an input and output.

Static role Static role must exist
Static role must have an input and output.

Rule Type
Rule type must exist
Any one of the rule types must exist: constraint, implication
and decision table.

Constraint rule Constraint rule can either be: single constraint, multiple
constraint, or grouped constraint.

Implication
rule

Implication rule must have antecedent and consequent.
Antecedent can be more than one.

Decision table Table is a two dimensional table.

Knowledge
Base

Knowledge base must exist.
Knowledge base must contain at least one tuple.
Knowledge base must contain instances of at least one rule
type.
Only static role can access the knowledge base.

An example of one of the rules written in XOCL (an

executable subset of OCL) is as follows (each inference must
have a unique name):

context Inference

@Constraints InferencesHaveUniqueNames

 inference->forAll (s1
 states->forAll (s2
 s1.name = s2.name implies s1 = s2))

end

E. Example of Housing Application Assessment
A brief description of the housing application case study

given in [2] follows. Rental residences are allocated to
potential applicants based on four types of eligibility criteria.
First, people have to apply for the right residence category.
Second, the size of the household of the applicant needs to be
consistent with the requirements on minimum and maximum
habitation in a certain residence. The third criterion is that
there should be a match between the rent of the residence and

the income of the applicant. Finally, there can be specific
conditions that hold for one particular residence.

Fig. 6 shows part of the knowledge modelling profile used
to represent the assessment in the housing application case
study. This example only concentrates on showing the
abstracting process of the residence application. The purpose
of this abstraction process is to provide useful categories of
cases that need to be distinguished for assessment purposes.
Here the assessment task will abstract all cases into two
groups, thus allowing a relatively large set of cases to be
categorised. The example here is translating the original
knowledge model (described in CommonKADS language)
into an XMF class diagram based on the abstract syntax model
shown earlier in this section.

The profile packages used here are the domain concept,
inference, knowledge base and rule type. There are two
concepts that represent the residence and applicant, and
between these concepts an association class residence-
application. For reasons of space, only one particular attribute
related to each concept and its associated axioms are shown in
the diagram.

Figure 6. Housing Application Assessment

The inference package will execute the task of abstracting
the cases by adding case abstraction to the case data. The task
will be realised by the task method �abstract case�. The task
method can be decomposed into other tasks or inferences. In
this example it is decomposed into the inference �abstract�.
The input for this task is �case descriptions� and the output
will be �abstracted case�. The inference will carry out the
reasoning process of abstracting the cases. The knowledge
role here will have the same input and output as the task, but
with inferences, they are referred to as dynamic input/output.
The reasoning process will use the �abstraction knowledge�
which is a static knowledge role. This knowledge is accessed
from the knowledge base.

In knowledge modelling, all the processes and actions
carried out by the system is specified in detail to help the KBS

name: Applicant

Concept

name: Abstract Case
input: Case Description
output: Abstracted Case

Task

name: Residence Application

Concept

name: Abstract Case
dynamic input: Case Description
dynamic output: Abstracted Case
static input: Abstraction Knowledge

Inference

name: Residence

Concept

name: Abstract Method
decomposition: Abstract Case Inference

Task Method

input:: Case Description
output: Abstracted Case

Dynamic Role

input: Abstraction Kowledge

Static Role

type: Implication Rule

Rule Typename: Residence Abstraction
antecedent: Residence Application
consequent: Residence Application
connection: has-abstraction

Implication Rule Type

name: System Decsription

Knowledge Base

name: Abstraction Rule

Tuple

exp: min-num-
inhabitants <= max-
num-inhabitants

Axiom
exp: applicant.age=
FLOOR (TODAY() -
applicant.age)

Axiom

methodroles
output

input

abstraction rule

roles

rule instance

knowledge elements

roles

rules

1058

developer understand the working mechanisms of the system
being designed. An important feature here is that it has been
explicitly stated the knowledge base used by the inference and
the rule type associated with it. The existence of knowledge
base is a typical characteristic of knowledge modelling. The
knowledge modelling profile is designed to allow this type of
specification and it is exploited in the housing application
assessment example.

VI. CONCLUSION AND FUTURE WORK

Managing knowledge through knowledge-based systems is
an important part of an enterprise�s knowledge management
initiative. Systems of this sort have evolved from being stand-
alone machines to being part of the enterprise�s group of
systems. The process of constructing knowledge based
systems is similar to that required by other software systems,
but conceptual modelling plays an important role in the
development process. Software engineering has adopted UML
as a standard for modelling, but the field of knowledge
engineering is still searching for the right technique. UML can
be adopted for knowledge modelling by exploiting the profile
extension mechanism defined by OMG.

This paper has described the process of creating such an
extension by basing the design of the knowledge modelling
profile on that of the XMF framework. This is a novel
approach in profile design as the XMF approach is an
extension to existing standards for meta-modelling such as
MOF, OCL and QVT, which are defined by OMG. This
approach is similar to UML, which has it models defined by
MOF, and XCore, which defines XMF is an extension to
MOF. The creation of a profile is important as it allows
knowledge based systems to be designed using an object-
oriented approach.

The knowledge modelling profile has defined concepts
which are used to develop the abstract syntax model of the
profile. This allows the capture of modelling elements
associated with the knowledge engineering domain in respect
to KBS design and the relationship between these concepts.
The profile�s well-formed-ness rules have been identified and
allowing for additional constraints, related to the concepts, to
be defined. An example demonstrates the ability of this profile
to model a knowledge based system.

Developing a profile is not an easy task and involves many
steps as demonstrated in Section IV of this paper. The future
work in this area involves the specification of the profile�s
semantics and construction of the concrete syntax model. Both
activities involve the use of the XMT tool, which is in its final
stage of development. The profile will be validated using this
tool and the models executed wherever possible.

The profile�s ability to model the requirements of a
knowledge based system has only be tested on a case study
adapted from one available in the literature. Testing the profile
in a number of real-world situations would be beneficial and
would identify any limitations and assist in the refinement of
the profile.

ACKNOWLEDGMENT
The authors gratefully acknowledge the provision of a

fellowship from Universiti Utara Malaysia that has enabled
this research to take place, and are grateful to Xactium for
early access to XMF. Details of XMF can be found at
http://albini.xactium.com.

REFERENCES
[1] Studer, R., Benjamins, R.V., and Fensel, D.: Knowledge Engineering:

Principles and Methods. Data & Knowledge Engineering, 1998. 25: p.
161-197.

[2] Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt,
N., de Velde, W.V. and Wielinga, B.: Knowledge Engineering and
Management: The CommonKADS Methodology. 1999, Massachusetts:
MIT Press.

[3] Angele, J., Fensel, D., Landes, D., Studer, R.: Developing Knowledge-
Based Systems with MIKE. J of Automated Software Engineering, 1998.
5(4): p. 389-418.

[4] Grosso, W.E., Eriksson, H., Fergerson, R.W., Gennari, S., Tu, S., and
Musen, M.A.: Knowledge Modelling at the Millennium (The Design
and Evolution of Protege 2000). 1999, Stanford Medical Institute.

[5] Speel, P., Schreiber, A. Th., van Joolingen, W., and Beijer, G.:
Conceptual Models for Knowledge-Based Systems, in Encyclopedia of
Computer Science and Technology. 2001, Marcel Dekker Inc, New
York.

[6] Stokes, M., Managing Engineering Knowledge: MOKA - Methodology
for Knowledge Based Engineering Applications. 2001, London, UK:
Professional Engineering and Publishing Limited.

[7] Felfernig, A., Friedrich, G.E., Jannach, D.: Generating product
configuration knowledge bases from precise domain extended UML
models. in 12 th International Conference on Software Engineering and
Knowledge Engineering (SEKE'00). 2000. Chicago, USA.

[8] OMG: Unified Modeling Language specification (version 1.4). 2001.
[9] OMG: Requirements for UML Profile. 1999.
[10] Perez-Martinez, J.E.: Heavyweight extensions to the UML meta-model

to describe the C3 architectural style. ACM SIGSOFT Notes, 2003.
28(3).

[11] OMG: MOF Specification version 1.4. 2002.
[12] Clark, T., Evans, A., Sammut, P., Willians, J.: Applied Metamodelling :

A Foundation for Language Driven Development (draft ver 0.1): To be
published. 2004. Accessible at http://albini.xactium.com/

[13] OMG: UML 2.0 Testing Profile specification. 2003.
[14] Abdullah, M.S.: Extending UML Using Profile for Knowledge-Based

Systems Modelling. 2004, Thesis Proposal, Computer Science,
University of York: York.

1059

	Previous Menu
	Main Menu
	Getting Started
	Foreword
	Sessions
	Authors

	Search CD-ROM
	Search Results
	Print

