
C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 438–453, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Using Unified Modeling Language for Conceptual
Modelling of Knowledge-Based Systems

Mohd Syazwan Abdullah1, Ian Benest2, Richard Paige2, and Chris Kimble2

1 Faculty of Information Technology, Universiti Utara Malaysia (UUM),
06010 UUM-Sintok, Kedah, Malaysia

syazwan@uum.edu.my
2 Department of Computer Science, University of York,

Heslington, York, YO10 5DD, United Kingdom
{idb,paige,kimble}@cs.york.ac.uk

Abstract. This paper discusses extending the Unified Modelling Language by
means of a profile for modelling knowledge-based system in the context of
Model Driven Architecture (MDA) framework. The profile is implemented us-
ing the eXecutable Modelling Framework (XMF) Mosaic tool. A case study
from the health care domain demonstrates the practical use of this profile; with
the prototype implemented in Java Expert System Shell (Jess). The paper also
discusses the possible mapping of the profile elements to the platform specific
model (PSM) of Jess and provides some discussion on the Production Rule
Representation (PRR) standardisation work.

1 Introduction

Knowledge-based systems (KBS) were developed for managing codified knowledge
(explicit knowledge) in Artificial Intelligence (AI) systems [1]. These were known as
expert systems and were originally created to emulate human expert reasoning [2].
KBS are developed using knowledge engineering (KE) techniques [2], which are
similar to those used in software engineering (SE), but they emphasise knowledge
rather than data or information processing. Both KE and SE development processes
have the same objective: to develop the system given the user requirements, in order
to solve a particular problem related to the domain [2]. Systems development in SE
involves the following iterative stages regardless of the methodology adopted: gather-
ing and analysing user requirements, designing the system by translating user re-
quirements into a software specification using conceptual models, coding the software
specification into computer programs, testing the program to ensure the agreed results
are produced, implementing the system and maintaining the system throughout its
intended life span.

The KE processes for constructing a KBS in general are: requirements analysis
involving identifying the scope for the KBS, designing the system by identifying the
sources of expert knowledge for the KBS and how to represent them, acquiring the
knowledge from the expert through knowledge acquisition techniques and construct-
ing the knowledge base with instances of the domain knowledge, coding the system
on target application languages or shells, testing the system to ensure the inference

 Using Unified Modeling Language for Conceptual Modelling of KBS 439

mechanism is working properly and producing the correct results, implementing the
system incrementally and performing maintenance on the system [5, 26, 29]. In com-
parison with SE, the KE has one additional stage: that of knowledge acquisition (KA).
This stage is vital in KBS development as the KBS is designed around the domain
expert’s knowledge of solving problems for a particular task, such as diagnosis, as-
sessment and so on. The acquired knowledge is then used to populate the knowledge
base in the form of rules, with which the system will perform reasoning. However, in
SE there is no KA stage as the system is intended to capture information rather than
reason with it and the actual dataset of the database will be populated by the system
user when the system is deployed [26, 29]. Therefore, it may be concluded that the
KA stage differentiates the SE and KE domains when developing software systems.

Central to this is the conceptual modelling of the system during the analysis and
design stages of KBS development (known as knowledge modelling). A number of
KE methodologies have emphasised the use of models, for example: CommonKADS,
Model-based and Incremental Knowledge Engineering (MIKE), Knowledge Acquisi-
tion and Representation Language (KARL) and others [3]. KBS continue to evolve as
the need to have a stable technology for managing knowledge grows; its current role
as an enabler in knowledge management initiatives has led to its wider acceptance [4].
It has matured from a non-scalable technology [1, 5]. Once restricted to the research
laboratory, it is now used for demanding commercial applications and is a tool widely
accepted by industry [6, 7]. As a result, the Object Management Group (OMG), which
governs object-oriented software modelling standards, has started the standardisation
process for production rule representation (PRR) [8] and knowledge-based engineer-
ing (KBE) services [9]. The standardisation of PRR is vital as it allows interoperabil-
ity of rules between different inference engines – much needed by industry [10, 11].

The major problem with conceptual modelling of KBS (known as knowledge mod-
elling) is that there is no standard language available to model the knowledge for
developing a KBS. Most of the languages used are adapted from SE. The languages
used in knowledge modelling are project based using a mix of notations such as Uni-
fied Modeling Language (UML), Integrated Definition Method (IDEF), Structured
Analysis and Design Technique (SADT) etc. The SE community has adopted UML as
the de facto standard for modelling object-oriented systems and the KE community
should do the same. This would be beneficial in the long-term as KBS can be easily
integrated into other enterprise systems [4] particularly if their designs were based on
a standard language; it would help facilitate communication and sharing of blueprints
among developers [12].

Research has shown that neither technical nor economic factors determine whether
KBS technology will be successfully adopted, but rather it is the organisational and
managerial environment that is the main determinant [13, 14]. Gill [13] highlights one
of the problems: the management of the development team. KBS projects are special-
ised in nature requiring team members to have knowledge of both the problem do-
main and the development tools. As a result, the team members are skilful individuals
and the success of the project is threatened if one or more leave the team mid-way
through the development or during the maintenance period. But a KBS that is de-
signed using an appropriate, well-understood, standard language for conceptual mod-
elling along with a methodologically sound representation technique should be readily
understood by new team members. Conceptual models (CM) are a description of the

440 M.S. Abdullah et al.

software system at different level of abstractions [15] and are popular in SE domain
for providing an overview of concepts and relationships of the real-world, eliminate
costly errors during analysis and design stages prior to construction and facilitates
better communications between different people in the project team [16]. The impor-
tance of CM in software systems development are reflected through Model Driven
Architecture (MDA) technique as models rather than codes have become the impor-
tant artifacts of software development [17].

This paper is organised thus. Section 2 discusses the UML extensibility mechan-
icsm. Section 3 describes the knowledge modelling profile, and section 4 illustrates
how the profile can be used to develop a KBS. Section 5 provides some discussion
and finding on the use of the profile in PRR standardisation, while section 6 con-
cludes with directions for future work.

2 UML, Model Driven Architecture and UML Profile Mechanism

UML is a general-purpose modelling language [18] that may be used in a wide range
of application domains. Although UML is very popular and widely used as the model-
ling language for business applications, its use for knowledge modelling is limited.
This is due to the fact that the usage of UML in modelling KBS has not been stan-
dardised [8], as there is no commonly agreed consensus on what KBS and KE con-
cepts should be represented in a KBS design, and how rules should be defined and
modelled. Nevertheless, there have been several attempts to use UML for knowledge
modelling but such comprehensive efforts are only reflected in CommonKADS [26].
UML can be extended to model domains that it does not currently support, by extend-
ing the modelling features of the language in a controlled and systematic fashion.

The OMG’s Model Driven Architecture (MDA) – a model-driven engineering
framework – provides integration with, and interoperability between, different models
developed using its standards [18] (such as UML, Meta-Object Facility (MOF), and
others). The growth of MDA will fuel the demand for more meta-models to cater for
domain specific modelling requirements [18, 19]. Profiles have defined semantics
and syntax, which enables them to be formally integrated into UML, though of course
they must adhere to the profile requirements proposed by OMG. Previous profile
development for knowledge modelling has concentrated only on certain task types
such as product design and product configuration [20]. In contrast, the work described
here emphasises the development of a generic profile for modeling the design knowl-
edge of a KBS. Developing a meta-model for knowledge modelling will enable it to
be integrated into the MDA space allowing the relation between the knowledge mod-
els and other language models to be understood. It provides for seamless integration
of different models in different applications within an enterprise. The OMG [21, 22]
defines two mechanisms for extending UML: profiles and meta-model extensions.
Both extensions have (unfortunately) been called profiles [18].

The “lightweight” extension mechanism of UML [22] is profiles. It contains a pre-
defined set of Stereotypes, TaggedValues, Constraints, and notation icons that collec-
tively specialize and tailor the existing UML meta-model. The main construct in the
profile is the stereotype that is purely an extension mechanism. In the model, it is
marked as «stereotype» and has the same structure (attributes, associations, operations)

 Using Unified Modeling Language for Conceptual Modelling of KBS 441

as that defined by the meta-model. However, the usage of stereotypes is restricted;
changes in the semantics, structure, and the introduction of new concepts to the meta-
model are not permitted [23]. The “heavyweight” extension mechanism for UML
(known as the meta-model extension) is defined through the MOF specification [24]
which involves the process of defining a new meta-model [23]. This approach should be
favoured if the semantic gap between the core modelling elements of UML and the
newly defined modelling elements is significant [18].

The work presented in this paper exploits the profile extension using the XMF (eX-
ecutable Meta-modelling Framework) approach [25] as we believe that the knowledge
modelling concepts can be modelled by tailoring existing UML meta-models without
having to introduce new meta-concepts to UML. Furthermore, this will enable the
profile to have readily available tool support, which will be a significant advantage
for knowledge modellers in adopting UML over other languages. The OMG only
specifies what profiles should constitute and not how to design them. By adopting the
XMF approach, the profile development is structured into well-defined stages that are
easy to follow and methodologically sound. The XMF is a newly developed object-
oriented meta-modelling language, and is an extension to existing standards for meta-
models such as MOF and UML. XMF offers an alternative approach in profile design,
which allows modification, or addition, of new modelling constructs; and these are
easily integrated into the core meta-model of UML. This work uses the XMF ap-
proach in designing the profile and implementing it in the Mosaic tool. Although
XMF core meta-model differs slightly from UML meta-model, and the same is true
for Eclipse ECore meta-model, nevertheless the fundamentals are still the same. Fur-
thermore, the knowledge modelling profile only extends the UML meta-class Class
and Associations. However, only the profile concepts’ extension to Class can be de-
fined using Mosaic, as associations are implemented as built-in modelling features
which are directly available to use at the model level.

3 UML Profile for Knowledge Modelling

The concepts for the knowledge modelling profile are re-used from the existing BNF
definition of the CommonKADS Conceptual Modelling Language (CML) [26]; this
provides a well-defined and well-established main set of concepts for the domain. Most
of these elements are generally adopted in the KBS literature [1, 27-29] and are widely
used for representing concepts in KBS in the KE domain. The Knowledge Modelling
profile was implemented using the XMF Mosaic by defining a meta-profile that allows
for the definition of the knowledge modelling profile stereotypes, which in turn enables
the construction of a knowledge model as an instance of the profile meta-model. To
achieve this, the profile is defined as an extension to the XCore meta-model (the XMF-
Mosaic’s MOF based meta-model, similar to the definition of the UML meta-model) in
the form of a meta-package for the profile. An important feature of the stereotypes is the
inheritance of the modelling capabilities of UML meta-class elements. Meta-package is
a mechanism in XMF-Mosaic that enables the content of the profile package to be
viewed as an instance of the XCore meta-model class. The profile meta-model used here
is the derived meta-model of CommonKADS and defined as the complete knowledge
modelling abstract syntax meta-model in [32] as shown in Figure 1.

442 M.S. Abdullah et al.

<<DomainConcept>>

name: String

<<Task>>

Class
(From UML Core)

name: String
decomposition: String

<<TaskMethod>>

name: String
Inference_dynamic_input: Arraylist []
Inference_dynamic_output: Arraylist []
Inference_static_input: Arraylist []
Category : InferenceCategory

<<Inference>>

transfer:
CommunicationCategory

<<TransferFunction>>

Static_input: Arraylist []

<<StaticRole>>Dynamic_input: Arraylist []
Dynamic_output: Arraylist []

<<DynamicRole>>

Class
(From UML Core)

<<Method>>
1..*

0..1

*

<<Transfer_role>>

*

<<knowledge
elements>>

<<Inference_inoutput>>

1..*

1..*

1..*

<<Facts>>

<<Domain_rules>>

1..*

<<Decision Table>>

antecedent: String
consequent: String
connection: String

<<ProductionRule>>

<<Rule_Instance>>

Knowledge Modelling Profile

<<FactBase>>

<<instances>>

<<InferenceTM>>

name: String

<<Rule>>

<<Inference_static>>

name: String

<<KnowledgeBase>>

name: String
number_of_rule: Int

<<Tuple>>
<<Organised>>1..*

1..*

1..*

provide
obtain
receive
present

<<enumeration>>
CommunicationCategory

forward
backward

<<enumeration>>
InferenceCategory

All associations in the profile are
extensions to the UML association class

<<Transfer>>

0..1

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

Fig. 1. Abstract syntax meta-model for knowledge modeling profile

The discussion of XCore meta-model here is related to implementing the profile in
the XMF-Mosaic tool. Although the knowledge modelling profile meta-model is in
UML, it is compatible with XMF-Mosaic because the elements that the profile ex-
tends are the standard MOF features in both tools. Furthermore, using various UML
tools in implementing a UML profile is different as these tools have distinct imple-
mentation procedures or concepts in defining the profile in the tool, but this does not
change the profile definition. Figure 2 shows the knowledge modelling profile stereo-
types defined in XMF-Mosaic.

A Concept class is used to represent structural things and these have attributes con-
tained in them; it is similar to class in the UML meta-model. When the attributes are
used in rules they are known as knowledge elements. A Concept is linked to the Rule
class in the model. Concepts are diagrammatically associated with FactBase; as the
values of the attributes are stored here and are extracted during the reasoning process
of the inference. The instances of each attribute, contained in the FactBase class, are
accessed by the dynamic role, which passes them to the inference process that
matches the premise with the consequent part of an implication rule.

 Using Unified Modeling Language for Conceptual Modelling of KBS 443

Fig. 2. Extension of the UML with stereotypes for the Profile

Task class defines the reasoning function and specifies the overall input and output
of the task. Each task will have an associated task method that executes the task. The
structure of the task, its task method, and the set of associated inference processes can
be defined with the knowledge model from the problem-solving method library. The
task-type, knowledge model, will help in identifying the inference structure needed to
perform the desired task. Task method can be decomposed into sub-tasks for certain
task-types. Task method class will specify the type of inference that is to be per-
formed. The control structure of the method captures the inference reasoning strategy,
which is described using an activity diagram. If the inference process requires addi-
tional input, either from the user or from an external entity, the task method will in-
voke a transfer function. Such functions are used to transfer additional information
between the reasoning processes.

The Dynamic Role class specifies the ‘information’ flow of attribute instances from the
concepts. It also specifies the outputs that arise from executing the inference sets. The
output of this inference process is the ‘result’ of matching the antecedent of the rule with
the consequent part. Depending on what the KBS is reasoning about, if it is not the final
output of the system, then the output can be used in another inference. The Static Role
class is the function responsible for fetching the collection of domain knowledge (rules)
from the knowledge base prior to an active inference. Inferences do not access the knowl-
edge base directly, but request the necessary rules related to the particular inference from
the static roles. In some KBS shells this is similar to posting the rules to the inference
process or similar to setting which rule should be fired. This allows the inference process
to handle a specific reasoning task and invoke those rules that are appropriate.

An Inference class executes a set of algorithms for determining the order in which
a series of non-procedural, declarative statements are to be executed. The inference
process infers new knowledge from information/facts that are already known. The
Task Method invokes this. The input (information/fact) used by this process is
provided by the dynamic role. The result of the inference process is then passed to the

444 M.S. Abdullah et al.

dynamic role. The knowledge element used in the inference is accessed through the
Static Role, which fetches the group of rules from the knowledge base. There are
several different inference processes for a given task, most of which are run in the
background by the inference engine. The knowledge base class contains domain
knowledge, represented as rules, which are used by the inference process. The con-
tents of the knowledge base are organized in tuples (records). A tuple is used to group
rules according to their features. This allows the partitioning of the knowledge base
into modules that enables the inference process to access the rules faster. The main-
tainability of the rules is enhanced when it is organised in this manner.

The Rule class of the profile describes the modelling of rules within the domain con-
cept. Rule class is used to represent knowledge elements in KBS and is viewed as ‘infor-
mation about information’. Rule class allows for rules to be in different formats. There are
two types of rule: implication rule, and decision table. An implication rule is of the form:
‘if-then’ premise followed by an action. This type of representation is widely used in KBS;
they are known as production rules. A decision table is an addition to the rule class. It is
introduced here because certain rules are best expressed in the form of a decision table,
even though they are usually converted to flattened production rules. This paper only
concentrates on rule-based KBS as it is the one widely adopted by industry [10, 11] and is
the focus of OMG’s PRR [8] and KBE [9] standardisation work.

4 Case Study – The Clinical Practice Guidelines KBS

The purpose of this case study was to show the usefulness of the knowledge modelling
profile in capturing the KBS requirements and to see the implementation value of the
profile when building a KBS from scratch. To demonstrate that the profile is capable in
bridging the gap between domain analysis and system implementation, a prototype KBS
was built using the Java Expert System Shell (Jess) [29]. The possible mapping between
the profile elements and Jess meta-model is also presented. The case study is based on
the Clinical Practice Guideline (CPG) recommendations for managing patients with
venous leg ulcers described in [30]. The CPG contains recommendations for assessment
of ulcers patients, the management of treatment using compression therapy, cleaning
and dressing of the ulcers, education and training of care through sharing of knowledge
and quality assurance issues related to provision of leg ulcer care. Each of these catego-
ries is further divided into several related factors grouped together functionally. The
guideline is evidence-based and these recommendations are gathered from systematic
review reports complied by researchers in patient health care. The guideline contains
recommendation statements, which were graded based on the following three strength
of evidence: I- Generally consistent findings in a majority of multiple acceptable stud-
ies; II- Either based on a single acceptable study, or a weak or inconsistent finding in
multiple acceptable studies; and III- Limited scientific evidence which does not meet all
the criteria of acceptable studies of good quality.

4.1 Modelling and Development of Clinical Practice Guidelines KBS

The CPG recommendation was implemented as a KBS application for educational pur-
poses to list the recommendations based on evidence strength using the following classi-
fication (a) evidence strength only; (b) evidence strength and category; (c) category

 Using Unified Modeling Language for Conceptual Modelling of KBS 445

only; and (d) factors, evidence and category. The rules for the KBS was defined based
on these classifications (in the actual recommendation, each recommendation has a
brief explanation rather than ID as I1, II2, III4, etc which are much more convenient
for discussions.).

The first stage in modelling KBS applications is to determine the nature of the
problem [29] that the system should tackle and what the applicable task types avail-
able in the task catalogue are [2, 26]. The CPG can be regarded as a classification
task, since the system classifies the recommendation based on four pre-defined crite-
ria. To avoid any confusion, this task is referred to as a recommendation task, which
is implemented using the task method ‘match method’, which consists of a single
‘match’ inference. This is shown in the task decomposition diagram in figure 3.

match method

task recommendation

match
inference

task method

Legend

Inference

Task
Method

Task

match

[recommendation result]

[recommendation selection = right]

[recommendation selection = incorrect]

[user recommendation type selection]

user selection checking

Fig. 3. Task decomposition diagram for CPG
based on CommonKADS [26] notation

Fig. 4. CPG UML activity diagram

The control structure of this match method is shown using the activity diagram and is
shown in figure 4. This is a straight-forward reasoning system as there are no loops in
the recommendation matching process. The system user makes a recommendation type
selection, and the resulting selection combinations are checked to ensure that they are
valid. The selection is then matched with the recommendation value and the result is
obtained. If incorrect selections are made, the selection process is repeated. Once the
KBS task requirements and functionality have been determined, the knowledge model
of the system is constructed using the knowledge modelling profile stereotypes. Most of
the stereotypes of the profile were used, except for transfer function, as the CPG system
does not need any input from external sources during the reasoning process and does not
need any decision tables, as the rules for the system are represented by production rules.
Figure 5 shows the knowledge model of the CPG application.

The KBS domain concept ‘CPG’ is composed of the five category of recommenda-
tions which are represented as domain concept ‘CPGManagement’, ‘CPGCleansing’,
‘CPGQualityAssurance’, ‘CPGAssessment’ and ‘CPGEducation’ shown at the top
section of figure 5. Each of the domain concepts has three attributes (name, factors and
evidence strength) upon which four types of rules for the system were defined based on
their values. The instances of these attribute are stored in the fact base of the system
which are accessed by dynamic role to get the facts for the inference reasoning process.
The inference executes the reasoning task based on the task method specification which
only specifies a single inference execution for the CPG system. The production rules of
the system are stored in the knowledge base which are organised into tuples.

446 M.S. Abdullah et al.

Fig. 5. CPG knowledge model

Dynamic
Role

Knowledge
Base

StaticRoleInferenceTransfer
Function

Interface FactBase

upload facts

get facts

facts

inference matching facts

Recommendation

inference matching rules

Recommendation rules

requested rules

Recommendation rules

CPG Recommendation Result

Fig. 6. Sequence Diagram of CPG system

KBS design is very much different to that of a conventional system, as the overall
aim of the KBS is to gather the needed facts to fire the rules. In doing so, completing
the whole reasoning cycle involves activation of different processes and message
passing between objects. As a result, it is difficult to capture these vital information
using object diagram due to the fact that several snapshots are needed to gather the
whole picture. However, this limitation was solved with the aid of another type of
UML diagram, namely the sequence diagram. Using sequence diagrams, the process-
ing elements of the KBS gathered from the profile are listed as objects with an addi-
tional Interface object to model the flow of logic that captures the dynamic behaviour

 Using Unified Modeling Language for Conceptual Modelling of KBS 447

of the KBS as shown on figure 6. The input from the user is entered through the inter-
face which becomes the fact for the system when the recommendation type selection
question has been answered. These facts are gathered by dynamic role and the infer-
ence engine gets these facts and matches them with the rule gathered from the knowl-
edge base to provide the recommendation.

Table 2. Jess Program Summary for CPG System

;; Module MAIN
(deftemplate CPG) deftemplate S-C-F)
(deftemplate question)(deftemplate answer)
(deftemplate recommendation)
;;Module Question
(deffacts question-data)(defglobal ?*crlf* = "")
;; Module ask
(defmodule ask)(deffunction ask-user (?question
?type))(defmodule startup)
;; Module interview
(defmodule interview)
(defrule request-strength => assert ask strength)))
(defrule assert-user-fact
 (answer (ident strength)text ?i))(answer (ident
cate_gory) (text ?d))(answer (ident factors_type)
(text ?j))=> (assert (user (strength ?i) (cate_gory
?d)(factors_type ?j))))
;; Module recommend
(defmodule recommend)(defrule S-C-F-1-0-0
 user (strength ?i&:(= ?i 1))(cate_gory ?d&:
(= ?d 0))factors_type ?j&:(= ?j 0))) => assert
recommendation (S-C-F STR1) (explanation "Strength
equals 1 Recommendation (I1 , I2 , I3 , I4)"))))

;; Module report

The CPG prototype recommendation system was implemented using Java Expert
System Shell (Jess) rule engine, which is a popular variation of the CLIPS rule engine
developed in Java. Jess was chosen as the implementation platform as it is the refer-
ence implementation of the JSR 94 Java Rule Engine API that defines standard API
for Java developer to interact with a Java rule engine widely used in commercial
products and open source software projects.

The system receives the user input value for the strength, category and factor
which are the facts for the system to fire the rules through the interview module based
on the questions from the question module and the ask module performing error
checking on the answers. In the recommendation module, the CPG rules are defined
(evidence strength only; category only; evidence strength and category; and factors,
evidence and category) and these rules are matched against the facts to fire the acti-
vated recommendation rule. The report module produces the recommendation report
of the system which contains the explanation and the recommendation value. Table 2
presents portion of the Jess program summary for CPG system and the sample screen-
shot is shown in figure 7.

448 M.S. Abdullah et al.

Fig. 7. Sample screenshot of the CPG system

4.2 Possible Mapping of the Profile to Jess

One of the key motivations for the MDA is in providing transformations between mod-
els (i.e. from a Platform Independent Model (PIM) such as a UML model or a profile
model to Platform Specific Model (PSM) of a specific implementation platform such as
Jess). The meta-model of Jess which defines the PSM is shown in figure 8. The purpose
of this mapping is to translate a model of the profile into Jess implementation to prove
that the profile is capable in bridging the gap between domain analysis and system
implementation.

However, the profile meta-model elements cannot be directly mapped to all ele-
ments of the Jess meta-model and only partial mapping are technically possible. This
limitation is due to the declarative nature of expert system shells programming and
the need to have different level of abstraction between general KBS conceptual model
and detail model of the implementation platform to enable model transformation in
generating the specific program code. However, it is acknowledged that the knowl-
edge modelling profile was very useful in understanding the KBS requirements for
the CPG recommendations. This limitation is further discussed in detail on section 5.

Table 3 lists the possible mapping of the profile elements to the Jess. The domain
concept elements of the profile can be mapped to deftemplate, defclass or
definstance of Jess. However, for the CPG system, only deftemplate was
used to represent the CPG domain concept which has three different slots for strength,
factor type and category. The factbase element of the profile can be mapped to def-
facts and for the CPG system; the question-data were used to gather the needed
facts for the application. There are no direct mapping for task and task method to Jess
but defmodule can be used to divide the application into structured modules. To
perform the reasoning process, inference is activated through the function ‘run’,

 Using Unified Modeling Language for Conceptual Modelling of KBS 449

which is a Jess function that starts the pattern matching process. The dynamic role can
be mapped to the Jess function ‘assert’ which asserts all facts into the working mem-
ory of the inference engine. In the CPG system, this can be seen in the interview module
in getting the facts to the working memory and asserting the recommendations.

Defmodule

JESS Function

LHS RHS

Defrule

Defquery

Deffacts Constraint

Definstance

DefclassDeftemplate

Conditional
Elements

Constraint

*

0..

1..**

0..
0..*

*

*

JESS Program

name: string
comment: string

Construct

constructs

condition

JavaBean

action

constraints

constraintCE

action

JavaBean

0..*

0..*1

facts

1

deftemplate

function-call

name: string

Deffunction

name: string

Slot

Fig. 8. Jess Meta-model

Table 3. Possible mapping of the Knowledge Modelling

Profile Concepts mapping JESS Concepts
DomainConcept

=
Deftemplate (Frame) Slot, Defclass
Definstance

FactBase = Deffacts
Task ≈ Defmodule
Task Method ≈ Defmodule
Inference ≈ Deffunction – run ()
Dynamic role ≈ Deffunction – assert ()
Static Role ≈ Defmodule - focus
Transfer function ≈ Defunction
Knowledge base ≈ Defmodule - focus
Tuple ≈ Defmodule – focus (rules partition)
Rule = Defrule
• Implication Rule
o Antecedent
o Consequent

=
=
=

Defrule - LHS, RHS
Deffunction, Conditional Elements
Defquery

450 M.S. Abdullah et al.

There is no direct mapping for knowledge base and tuple, but the defmodule
constructs of Jess allows large number of rules to be physically organised into logical
groups. Modules also provide a control mechanism that only allows the module that
has the focus to fire the rule in it, and only one module can be in focus at a time. In
the CPG system, the recommend module is used to organise the rules into knowledge
base and static role can be mapped to the focus function of Jess since all the CPG
rules for the inference engine are contained here. The role of transfer function in ob-
taining additional information can be mapped to the defmodule construct that im-
plements the appropriate functions to get this information.

Table 4. CPG ‘S-C-F-1-0-0’ rule

1 defrule S-C-F-1-0-0
2 user (strength ?i&:(= ?i 1))
3 cate_gory ?d&:(= ?d 0))
4 factors_type ?j&:(= ?j 0)))
5 => assert recommendation S-C-F STR1) (explanation
6 "Strength equals 1 Recommendation I1,I2,I3,I4)"))))

The rule element of the profile can be mapped directly to the defrule construct
of Jess in which the antecedent part corresponds to the left-hand side (LHS) of the
rule and the consequent part corresponds to the right-hand side (RHS) of the rule. The
following example of manual mapping the CPG system rule ‘S-C-F-1-0-0’ shown
in table 4 would help demonstrate this better.

In line 1, we define the rule using defrule which states the name of the rule – in
this case strength = 1, category = null and factor = null S-C-F-1-0-0 which will list all
recommendation of strength values of 1. Line 2, 3 and 4 is the LHS of the rule
which consists of facts matching patterns and line 5 and 6 contains the function call
(RHS) which asserts the recommendations values.

5 Discussions Related to OMG PPR Standardisation Work

The following discussions are intended to provide useful information regarding KBS
modelling in the context of the OMG Production Rule Representation standardisation
work. The PPR work mainly requires the use of activity diagrams to model the relation-
ship between rulesets to action states. However, in this work we have identified that the
use of activity diagram is limited to model a particular process of the system. Further-
more, class diagram can only provide partial snaphots of the system at a particular point
in time which is less meaningful in complex inference cycles. To overcome this limita-
tion, we have used the sequence diagram which clearly helps to understand the flow of
logic in the system as shown in section 4.2.

The profile described in this paper would help in understanding how rules are re-
lated to the domain concept elements in the KBS and the processes that are involved
in activating the rule to fire with the help of activity and sequence diagram.

 Using Unified Modeling Language for Conceptual Modelling of KBS 451

Furthermore, the profile only shows the categories of rule which can be modelled in a
single diagram with the other model elements. Thus the profile would help overcome
the current problem of omitting rules from the model.

Mapping the profile to PSM is only limited to domain concept, factbase and impli-
cation rule. The rest of the profile elements are useful to describe the KBS and usually
implemented differently as runtime concepts in various rule engines. Nevertheless,
this proves that the most important work in designing and developing KBS is writing
the rules based on the domain concepts which attribute values stored in the fact base
will activate the rules. As such, the standardisation work in PRR should first empha-
sise on agreeing standard representation of rule elements in writing rules which are
portable across different inference engines.

6 Conclusion and Future Work

This paper presented an extension to UML using the (lightweight) profile mechanism
for knowledge modelling that allows the relevant structural properties of KBS to be
represented at conceptual level. This allows knowledge models to be built using an
object-oriented approach based on the standard modelling language that is widely
adopted. The profile was implemented in an object-oriented meta-modelling language
tool, XMF Mosaic that allows easier visual implementation of profile which diagrams
are similar to the common UML editors.

The profile has been successfully tested on several case studies. This includes de-
signs from scratch and re-engineering of existing KBS and the results are encourag-
ing. Currently work has concentrated on building an Eclipse plug-in to support the
profile as it is a popular implementation tool for UML profiles. The plug-in allows
profile-compliant diagrams to be drawn and validated, and XML or XMI representa-
tions produced. The infrastructure in the Eclipse makes this mapping straightforward
to implement. The future work in this area involves studying how to automate the
generation of Jess code from the profile elements that can be mapped to Jess meta-
model. The work in automating the generation of Jess code from models is still in a
work in progress [31].

References

1. Giarratano, J.C., Riley, G.D.: Expert Systems: Principles And Programming. Course
Technology, Boston, Massachusetts (2004)

2. Studer, R., Benjamins, R.V., Fensel, D.: Knowledge Engineering: Principles and methods.
Data & Knowledge Engineering, 25(1), 161–197 (1998)

3. Gomez-Perez, A., Benjamins, V.R.: Overview of Knowledge Sharing and Reuse Compo-
nents: Ontologies and Problem-Solving Methods. In: IJCAI-99 Workshop on Ontologies
and Problem-Solving Methods (KRR5), Stockholm, Sweden (1999)

4. Ergazakis, K., Karnezis, K., Metaxiotis, K., Psarras, I.: Knowledge Management in Enter-
prises: A Research Agenda. Intelligent Systems in Accounting, Finance and Manage-
ment 13(1), 17–26 (2005)

5. Awad, E.M.: Building Expert Systems: Principles, Procedures, and Applications. West
Publishing, Minneapolis (1996)

452 M.S. Abdullah et al.

6. Liebowtiz, J.: If you are a dog lover, build expert system; if you are a cat lover, build neu-
ral networks. Expert System with Applications 21, 63 (2001)

7. Preece, A.: Evaluating Verification and Validation Methods in Knowledge Engineering, in
Micro-Level Knowledge Management. In: Roy, R. (ed.) Evaluating Verification and Vali-
dation Methods in Knowledge Engineering, in Micro-Level Knowledge Management, R,
pp. 123–145. San Francisco, Morgan-Kaufman (2001)

8. Production, O.M.G.: Rule Representation - Request for Proposal, Object Management
Group: Needham, USA. p. 57 (2003)

9. Services, O.K.: for Engineering Design - Request for Proposal, Object Management
Group: Needham, MA, US. p. 32 (2004)

10. McClintock, C.: ILOG’s position on Rule Languages for Interoperability. In: W3C Work-
shop on Rule Languages for Interoperability, Washington, D.C, USA (2005)

11. Krovvidy, S., Bhogaraju, P., Mae, F.: Interoperability and Rule Languages. In: W3C
Workshop on Rule Languages for Interoperability, Washington, DC, USA (2005)

12. Abdullah, M.S., Benest, I., Evans, A., Kimble, C.: Knowledge Modelling Techniques for
Developing Knowledge Management Systems. In: Abdullah, M.S., Benest, I., Evans, A.
(eds.) 3rd European Conference on Knowledge Management, Dublin, Ireland (2002)

13. Gill, G.T.: Early Expert Systems: Where Are They Now? MIS Quarterly 19(1), 51–81
(1995)

14. Tsui, E.: The role of IT in KM: where are we now and where are we heading. Knowledge
Management 9(1), 3–6 (2005)

15. Juristo, N., Moreno, A.M.: Introductory paper: Reflections on Conceptual Modelling. Data
& Knowledge Engineering 33(2), 103–117 (2000)

16. Dieste, O., Juristo, N., Moreno, A.M., Pazos, J., Sierra, A.: Conceptual Modelling in Soft-
ware Engineering and Knowledge Engineering: Concepts, Techniques and Trends. In:
Chang, S.K. (ed.) Handbook of Software Engineering & Knowledge Engineering, pp.
733–766. World Scientific Publishing, Hackensack, NJ (2002)

17. Jézéquel, J.-M., Hussmann, H., Cook, S.: A Metamodel for the Unified Modeling Lan-
guage. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.). UML 2002. LNCS, vol. 2460,
Springer, Heidelberg (2002)

18. Muller, P.-A., Studer, P., Bezivin, J.: Platform Independent Web Application Modeling.
In: Stevens, P., Whittle, J., Booch, G. (eds.). UML 2003. LNCS, vol. 2863, Springer, Hei-
delberg (2003)

19. Brown, A.W.: Expert’s voice - Model driven architecture: Principles and practice. Soft-
ware and Systems Modelling 3(4), 314–327 (2004)

20. Abdullah, M.S., Kimble, C., Paige, R., Benest, I.: Developing UML Profile for Modelling
Knowledge-Based Systems. In: Aßmann, U., Aksit, M., Rensink, A. (eds.) MDAFA 2003.
LNCS, vol. 3599, Springer, Heidelberg (2005)

21. OMG. UML 2.0 InfrastructureFinal Adopted Specification, [cited 2004 5 April], Available
from (2003), http://www.omg.org

22. OMG, Requirements for UML Profile. 1999, Object Management Group: Framingham,
MA. p. 8.

23. Perez-Martinez, J.E.: Heavyweight extensions to the UML metamodel to describe the C3
architectural style. ACM SIGSOFT Software Engineering Notes, 28–3 (2003)

24. OMG. MOF Specification version 1.4. 2002 [cited 2004 5 April], Available from,
http://www.omg.org

25. Clark, T., Evans, A., Sammut, P., Willians, J.: Metamodelling for Model-Driven Devel-
opment (draft) (To be published 2004), http://albini.xactium.com

 Using Unified Modeling Language for Conceptual Modelling of KBS 453

26. Schreiber, G., Akkermans, H., Anjewierden, A., De Hoog, R., Shadbolt, N., De Velde, W.:
Knowledge Engineering and Management: The CommonKADS Methodology. MIT Press,
Massachusetts (1999)

27. Cuena, J., Molina, M.: The role of knowledge modelling techniques in software develop-
ment: a general approach based on a knowledge management tool. International Journal of
Human-Computer Studies 52, 385–421 (2000)

28. Håkansson, A.: UML as an approach to Modelling Knowledge in Rule-based Systems. In:
The Twenty-first SGES International Conference on Knowledge Based Systems and Ap-
plied Artificial Intelligence (ES2001), Peterhouse College, Cambridge, UK (2001)

29. Friedman-Hill, E.: Jess in Action: Rule-Based System in Java. Manning Publications,
Greenwich, US (2003)

30. Clinical, R.C.N.: Practice Guidelines: The management of patients with venous leg ulcers.
Royal College of Nursing Institute, London (1998)

31. Wu, C.G. (2004) Modelling Rule-Based Systems with EMF. Accessed at http://www.
eclipse.org/articles

32. Abdullah, M.S., Profile, A U.: for Conceptual Modelling of Knowledge-Based Systems,
Unpublished PhD Thesis, University of York (2006)

	Using Unified Modeling Language for Conceptual Modelling of Knowledge-Based Systems
	Introduction
	UML, Model Driven Architecture and UML Profile Mechanism
	UML Profile for Knowledge Modelling
	Case Study – The Clinical Practice Guidelines KBS
	Modelling and Development of Clinical Practice Guidelines KBS
	Possible Mapping of the Profile to Jess

	Discussions Related to OMG PPR Standardisation Work
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

