
PHILOSOPHICAL SMOKE SIGNALS:
THEORY AND PRACTICE IN

INFORMATION SYSTEMS DESIGN

David King and Chris Kimble

David King, University of Sheffield, Department of Computer Science, 211
Portobello Street, Sheffield, S1 4DP. david@dcs.shef.ac.uk +44 1142 221 831

Chris Kimble, University of York, Department of Computer Science, Heslington,
York, YO10 5DD. kimble@cs.york.ac.uk +44 1904 433 380

Keywords: History, Information, Knowledge, Philosophy, Theory

Abstract
Although the gulf between the theory and practice in Information Systems is much
lamented, few researchers have offered a way forward except through a number of
(failed) attempts to develop a single systematic theory for Information Systems. In
this paper, we encourage researchers to re-examine the practical consequences of their
theoretical arguments. By examining these arguments we may be able to form a
number of more rigorous theories of Information Systems, allowing us to draw theory
and practice together without undertaking yet another attempt at the holy grail of a
single unified systematic theory of Information Systems.

1 Background
Theory and Practice
Although the foundations of Information Systems have been much debated over the
last 40 years, the practical value of these debates has often been questioned (Bacon
and Fitzgerald, 2001; Oettinger, 1964). This has lead to something of a gulf between
Information Systems theory and practice (Farhoomand and Drury, 1999; Glass, 1996).
However, if we are to address either theoretical or practical problems, we must also
deal with the relationship between the two.

For instance, recent papers from the 'theory' side of Information Systems research
have pushed for the formation of a 'scientific' foundation for Information Systems
(Farhoomand, 1987; Khazanchi and Munkvold, 2000). In one sense, pushing for a
'scientific' foundation for Information Systems is not a bad idea. The problems start
when we ask, "what kind of science might underpin Information Systems"?

In recent years, we seem to have seen a concerted push to move Information Systems
to the same 'scientific foundation' as Computer Science. The wisdom of such a move
is questionable. We could for example point out the scientific nature of Computer
Science has been a source of active debate for over 50 years (Dijkstra, 2001;
McGuffee, 2000; Proulx et al, 1996). However, a more serious criticism would be
that the original impetus for creating a separate field of Information Systems was the
sense the context of Computer Science and Information Systems were clearly distinct
(Davis et al, 1996. For instance, in the Association for Computational Machinery (Jay

et al, 1982, p. 784) argued when drawing up a curriculum for undergraduate studies,
that:

"The IS curriculum teaches information system concepts and processes within two
contexts, organization functions and management knowledge, and technical
information systems knowledge"

by contrast:

"… Computer Sciences [sic] tends to be taught within an environment of mathematics,
algorithms and engineering technology."

The Context of Information Systems
When researchers form theories in Information Systems, they must be aware of the
practical context of their theories. Hence, the properties of "organization functions"
or "technical information systems knowledge" are not simply a matter of academic
debate. Rather, these theoretical assumptions have deep implications for anyone
using these theories in practice.

In this paper, we will explore one facet of the practical implications of such
theoretical assumptions by examining two problems in software design. One problem
concerns the nature of theories about knowledge and one the nature of theories about
the world. Since many Information Systems require (or at least use) a software
component, we hope this focus will not overshadow the broader arguments of the
paper.

Software design presents many interesting opportunities to study the practical
consequences of theoretical assumptions (King and Kimble, 2004a). Software
designers' work in the context assumed by researchers in Information Systems: the
context of "organization functions and management knowledge and technical
information systems knowledge". In contrast, computer programs have a distinct
mathematical and philosophical heritage: one that has remained fixed since at least the
1930s. Consequently, program designers must work in the context assumed by
researchers in Computer Science: the context of "mathematics, algorithms and
engineering technology".

In short, program designers must use closed, consistent and complete
characterisations of the world if the final design is to be of any use. Software
designers, by contrast, can (and usually do) deal with open, inconsistent and
incomplete characterisations of the world. Exactly how the two worlds of software
and program design can be reconciled is a theoretical question: but the answers are of
vital importance to any practical solution.

Terminology
In this paper, we will confine our examination of software design to just two debates:
one over the term information and another over the term knowledge. Our aim in this
paper is not to establish incontrovertible definitions for either of these two terms;
rather we are interested in the arguments used by others in trying to establish such
definitions. Only by understanding these arguments can we gain an insight into the
practical consequences of theoretical assumptions.

However, we do have to start somewhere. In this paper, we frame our discussion by
reference to three important concepts: descriptions, representations and reality.
Recognising the impossibility of 'philosophy-free' definitions, we define three
concepts (somewhat arbitrarily) by reference to the Oxford English Dictionary. We
hope by doing this our readers will forgive the emphasis given to particular schools of
philosophical thought during the definition of these three concepts.

For the first of our three concepts, we begin with the unperceived universe: a universe
beyond the reach of any individual designer. This unperceived universe we will call
reality, defined as "… that which underlies and is the truth of appearances or
phenomena" (Simpson and Weiner, 1989). In common with academic philosophical
discussions, our emphasis in the concept of reality is centred on what really exists. In
particular, our use of the term 'reality' does not refer to the existence perceived by any
individual designer (Audi, 1995). Nonetheless, the perceptions of an individual
designer can be important to the success of the software design (Sommerville and
Sawyer, 1997). Often, it is only by capturing these viewpoints that a designer can
fully understand the needs of all the users (Graham, 1996). Thus in software design,
in addition to 'unperceived reality', we need a notion of 'perceived reality'; we will call
this perceived reality the representation. The representation can be thought of as the
mental model used by an individual designer, or more simply, the world imagined by
the designer. The representation can therefore be defined as "[t]he operation of the
mind in forming a clear image or concept" (Simpson and Weiner, 1989). However,
these mental models are not directly transmissible. Instead, some intermediate form is
needed; we will call this form the description. For now, we will simply define
descriptions as "[a] statement which describes, sets forth, or portrays" (Simpson and
Weiner, 1989).

2 Knowledge
Epistemological Positions
Having defined our three concepts, descriptions, representations and reality, we will
now examine the first of our theoretical debates, the debate over the term 'knowledge'.
In philosophical discussions, debates over the term knowledge fall under the realm of
epistemological arguments. Within the field of epistemology, researchers in software
design have often exploited two contrasting extreme viewpoints. The first is the
rationalist position, which argues that knowledge is the product of thought and reason
(Jack, 1993b). This forms the foundation for software design methods that see the
concepts 'representation' and 'description' as being equivalent. For instance, software
design methods using formal theory frequently draw an equivalence between software
and program design methods. Early software design methods, such as the Structured
System Design Methods used in the 1960s and 1970s, borrow from rationalist
arguments (Connell and Shafer, 1989).

At the other extreme to rationalist arguments lies the empiricist position. Researchers
borrowing from the empiricist position argue that knowledge is the result of
observation and experience (Jack, 1993a). Thus, software designers following the
empiricist position do not see the concepts 'representation' and 'description' as
equivalent but do see the concepts of reality and the representation as being
equivalent. For example, researchers in object-oriented software design methods
borrow from empiricist arguments by making the distinction between objects as they

exist in reality, and objects perceived by the software designers, equivalent. Software
design methods proposed by researchers using the early forms of general systems
theory, for instance Peter Checkland's Soft System Methodology, also borrow from
empiricist arguments Checkland, 1981).

As philosophical arguments, rationalist and empiricist positions represent two extreme
positions. Most philosophical schools take a position somewhere in-between these
two. Nonetheless, these philosophical arguments are carefully crafted. Researchers
in software design, though, have tended to be less philosophically rigorous. While
this may seem a trivial point, when we try to apply theories, such philosophical lapses
have a tendency to bite back.

What happens, for instance, if we try to define and apply a formal theory of object-
oriented design? Can we simply conflate arguments from both the rationalist and the
empiricist schools and create a suitable theoretical foundation for a new design
method? Alternatively, do the different undercurrents in the two schools of
philosophy create a tension leading to unsolvable problems when we try to define
what 'knowledge' means in the context of our new theory?

Epistemology in Software Design
Practically, while rationalist positions consider the representation to be stable,
empiricist positions consider the representation to the unstable. The stability, or
otherwise, of the representation creates a fundamental problem for applied theories of
software design borrowing epistemological arguments from different schools of
thought. Take, for instance, the object-oriented design of a juice plant control system
shown in Figure 1. We will not go into a detailed discussion of the graphical syntax
of Figure 1, rather we will only consider the practical problems of a designer trying to
form a description of the cooking tank.

(a) Fragment of an Entity-Relationship Diagram of the data manipulated by a Juice
Plant Control System

(b) Fragment of a UML Class Diagram of the Juice Plant Control System

Figure 1: Fragments of an Object-Oriented Design for a Juice Plant Control System
(Wieringa, 1998 - Figures 5 and 6)

According to empiricist arguments, the designer first forms a representation of the
cooking tank from the experience of the cooking tank, as pictured in Figure 2(a).
From this experience, the designer can then form a description of the representation,
as illustrated in Figure 2(b). However, simply forming the description from
representation also counts as experience. Consequently, the original representation
must change, to take into account this new experience, as shown in Figure 2(c). In the
empiricist view, the representation and the description are always out of step and so
cannot be equated.

Representation

Description

Representation

Description

Representation

(a) Before a Change (b) During a Change (c) After a Change

Figure 2: The Empiricist Relationship between Description and Representation

To get around this instability, the rationalist approach argues that reason is
independent of experience. If the principles of reason are independent of experience,
then it is possible to bring the description and representation back in step with one
another. In the rationalist view, the designer starts with the description (not the
representation) as illustrated in Figure 3(a). By applying the principles of reason
(which are independent of experience), the designer can then form a representation
from the description, illustrated by Figure 3(b). Unlike the empiricist position, there
is nothing that now forces a change to either the description or the representation.
Thus, the description and representation remain in step, even after a change in the
description, as indicated in Figure 3(c).

Description

Description

Representation

Description

Representation

(a) Before a Change (b) During a Change (c) After a Change

Figure 3: The Rationalist Relationship between Description and Representation

Once consequence of the rationalist arguments is the assumption that all designers are
conscious of their own representations. In other words, nothing exists in any
designers' representation that cannot be represented in a description created by
rational means.

Knowledge created though the full consciousness of an individual mind is called
explicit knowledge. By contrast, empiricist approaches also recognise the existence of
knowledge that a designer is not consciously aware of. This type of knowledge is
called tacit knowledge and cannot be turned into a description because the designer
has no direct awareness of it. Most empiricist approaches claim (Audi, 1995) that:

"Much of our knowledge is tacit: it is genuine but we are unaware of the relevant
states of knowledge, even if we can achieve awareness upon suitable reflection."

Current evidence suggests that adequately dealing with tacit knowledge is a real
problem (Desouza, 2003, Shipman and Marshall, 1999). Yet, if we adopt a strict
rationalist position, tacit knowledge should not exist, since such knowledge is defined
by rational articulation. We can incorporate tacit knowledge into approaches leaning
towards rationalist positions (Reeves and Shipman, 1996), but while this makes it
easier to form software descriptions, forming the corresponding program descriptions
becomes harder.

Defining Knowledge
Both the rationalist and empiricist positions offer attractive features as theoretical
foundations for methods of software design. However, neither approach offers a
definition of knowledge that is easily reconcilable with the other. In the rationalist
approach, it is easier to create descriptions that are clear and unambiguous, because all
designers must interpret the description in the same way and all designers have full
awareness of their own representations. This eliminates any tacit knowledge that
might lie behind the design. By eliminating tacit knowledge, the practical problem of
creating descriptions of Information Systems should be eased.

However, if we find tacit knowledge is important, moving to empiricist arguments
may help. Software design in this view is often more dynamic, with new experiences
constantly forcing a change in the descriptions of the software design. However, if
we move to empirical theories, we have a new problem of design consistency.
Empiricist approaches expect different designers to have different representations of
the design - which makes it impossible to demonstrate that the final design is
consistent.

In short, adopting theories at either extreme will lead to practical problems with either
the use of tacit knowledge or with design consistency. We cannot easily short-circuit
our difficulties by conflating theories from both approaches, since these theories rely
on incommensurable notions of knowledge. If we find problems with design
consistency, using theories based on rationalist arguments may help. Similarly, if we
find tacit knowledge is important, using empiricist theories may help. However,
neither approach will solve both problems simultaneously: we are always left with an
uncomfortable compromise.

3 Information
Ontological Positions
Leaving aside the problem of knowledge for a moment, we can see the same kinds of
practical and theoretical issues played out when dealing with the (apparently) more
straightforward problem of information. Given the strong theoretical links between
formal theory and information theory, most researchers in software design methods
have assumed that the theoretical definition of information has few, if any, practical
consequences. Certainly, researchers show far more agreement over the definition of
the term 'information', compared to the lack of consensus in the debate over the term
'knowledge' (Meadow and Yuan, 1997).

Nonetheless, software design methods still draw on distinct ontological arguments
when trying to define 'information'. In philosophy, the problems of ontology focus on
questions on the nature of reality. As with epistemology, there are two broad
extremes woven into most philosophical positions. The first forms the foundation for
realist arguments, which "… emphasises that truth is possible: beliefs are testable
against 'reality' and that reality is 'knowable'" (Duro et al, 1993). In other words,
realist arguments emphasise that reality is independent of a designer. Software design
methods from both the formal and object-oriented strands of research often show
examples of the influence of realist ontological arguments.

Nonetheless, realist ontological arguments are not completely ubiquitous in software
design. Older structured software design methods for procedural languages often use

arguments from the other broad ontological extreme: anti-realism. Anti-realist
arguments claim that the perception of reality is so bound to the observing mind that:

"Even if we could impart the highest degree of clearness to our intuition, we should
not come one step nearer to the nature of objects by themselves." (Kant, 1966, p 36)

In software design, a common problem lies in trying to reconcile the logical
perfection of the program design with the behaviour of the real world. Structured
software design methods address this problem by separating the logical design (the
representation) from the physical design (modelling reality).

Ontology in Software Design
Most modern software design methods prefer seamless design and try not to separate
the logical and physical designs (Jackson, 2001). In addition, realist ontological
arguments offer many attractions to researchers trying to develop the systematic
theories required by seamless software design. By emphasising the independence of
reality in the realist position, it is always possible to reconcile a representation to
reality. This becomes an equivalence between a designer's representation and reality.

For example, using the cooking tank problem, the perception of the designer (the
representation) is fundamentally different to the real object of the cooking tank. This
is situation is pictured in Figure 4(a). If a designer now witnesses a change in the
properties of a cooking tank, every detail of that change is apparent to the designer.
Moreover, not every detail of that change depends on the perception of the designer.
This means that the designer can update their representation to bring it back into line
with the new reality as shown in Figure 4(b). After both the representation and reality
have changed, the independence of the two means that neither need undergo any
further changes. Hence, both reality and the representation stay in step and an
equivalence between the two is preserved as pictured in Figure 4(c).

Reality

Representation

Reality

Representation

Reality

Representation

(a) Before a Change (b) During a Change (c) After a Change

Figure 4: The Realist Relationship between Reality and Representation

In contrast, according to anti-realist arguments, there is no independence between
reality and a designer's representation. In the anti-realist arguments, 'reality' cannot be
said to exist unless it is perceived. Consequently, we cannot maintain an equivalence
between these two concepts.

Representation

Reality

Representation

Representation

(a) Before a Change (b) During a Change (c) After a Change

Figure 5: The Non-Realist Relationship between Reality and Representation

When dealing with the cooking tank problem, only the representation held by an
individual designer is relevant. Whatever 'reality' may or may not be is immaterial as
it has no influence on the designer, as shown in Figure 5(a). Only when a designer
changes their perception of reality, for instance in response to a change in the
character of a cooking tank, is the representation changed, as shown in Figure 5(b).
After this change, 'reality' ceases to have an influence on the representation of the
designer, as pictured in Figure 5(c). This means that there can be no equivalence
between representation and reality. It also means that the individual representations
of designer are unique to those designers. There is no common point of reference as
there is in the realist position. Again, this means that demonstrating a consistency
between a representation and reality becomes impossible in the anti-realist position.

Defining Information
In recent years, most new software design methods prefer a realist ontological
position as realism offers three useful claims (Audi, 1995):

1. There are real chunks of the world.

2. These chunks exist independently of any designers experience and knowledge of

them.

3. The chunks have properties and enter into relations independently of the concepts

used by designers to understand them, or of the language designers use to describe
them.

Together, these three properties allow the assumption that reality forms an
independent point of reference. With an independent frame of reference, designers
can increase the overall consistency of the design, even if the description is unstable.
In particular, realism offers a way of defining information directly from properties of
reality. If 'data' is formed from reality, we can then see 'information' as simply the
transformation of 'data' into the perception of an individual designer.

Nevertheless, this also implies 'data' is somehow an objective reference point for all
designers. Older methods of software design often dispute this, recognising a
distinction between the 'ideal' flow of data and data transformation as it occurs in the

real world. Thus, older methods of software design use anti-realist arguments to
separate the description from reality. This means that a clear, unambiguous
description is not hampered by the need to demonstrate the same clarity and
unambiguity in reality. For structured design methods (and also for methods such as
Checkland's Soft Systems Methodology), anti-realism offers another way of
emphasising the influence of designers and subjective interpretations of the world.
Information in this view is more closely tied with the individual perceptions of
designers.

As with epistemological arguments, these different ontological arguments are not
easily reconciled with each other. Like epistemological arguments, both anti-realist
and realist arguments also have different expectations of an applied theory. Under
realist ontological arguments, the structure of theory should be a close analogue of
reality. While under anti-realist ontological arguments, mapping theory to reality is
non-trivial. Both forms of philosophical argument therefore emphasise the
distinctness of design methods following research in different strands.

4 Conclusion
Problems for a Systematic Applied Theory
When it comes to applying information systems theories, most researchers start by
trying to find a single systematic Theory of Information Systems. However,
ontological and epistemological differences between the various competing theories
pose a considerable challenge.

For instance, in developing a systematic formal theory for object-oriented design, we
must somehow deal with the differing epistemological assumptions of formal and
object-oriented theory. Commonly, designers using formal software design methods
borrow from rationalist epistemological arguments, for instance, by emphasising the
role of reason and logic in forming descriptions of reality. By contrast, software
designers using object-oriented often emphasise the role of observation in trying to
form descriptions of reality. So why can we not simply conflate the two positions and
emphasise both reason and observation? The short answer is we could, but we must
be very careful in doing so.

Take, for instance, a definition of knowledge in our new formal theory of object-
oriented design. Under rationalist epistemological arguments, designers gain
knowledge through logical deduction from objective first principles. Further, the
representation contains nothing that cannot be expressed equally well in the
description. Moreover, the description offers a shared, objective touchstone for all
designers. If the distinction between the description and the representation is
effectively non-existent, why should our concept of knowledge in this new framework
focus on the representation, rather than the description?

In contrast, many object-oriented design methods assume the relationship between the
description and representation is real and non-trivial. Borrowing from empiricist
epistemological arguments, object-oriented software design methods assume the
software description can, and will, get out of step with a designers representation.
Indeed whole areas of research into object-oriented design have been devoted to
trying to reconcile designer's representation with the descriptions (Berry, 2002;
Pancake, 1995; Schwaber, 2002). Hence, for object-oriented software design

methods, we may find compelling reasons for using a definition of knowledge that
ignores the description and focuses instead on the representation.

Systematic or Rigorous?
Returning to the context of Information Systems for a moment, even if the context of
Information Systems is distinct from the context of Computer Science, we might not
need a single a systematic theory. Do we, for instance, require all organisations to be
underpinned by a single systematic theory to be able to reason about their behaviour?
Such a movement away from systematic theories necessarily invalidate the quest for a
scientific underpinning of Information Systems. Economic theories, for example, are
widely used to reason about the behaviour of organisations although there is not a
single systematic theory of economics.

In software design, we lack good, rigorous, theories of why particular software design
methods work or do not work. Developing a deeper understanding of Information
Systems (and thereby closing the gulf between theory and practice) may mean a move
away from universal systematic theories and towards a range of differing but more
rigorous ones - at least in the short term. These rigorous theories might one day join
up into a systematic theory of software design, or they may not. Indeed, for software
design at least, we have good theoretical reasons for believing a truly systematic
theory may never exist (King and Kimble, 2004b).

Developing a range of more rigorous theories may mean abandoning old habits. In
software design, researchers often seem to assume that the only valid context for their
theories is the same as that adopted by program design. However, formal theories of
program design cannot incorporate ambiguity. Although few researchers have looked
at the benefits of ambiguous design, some research has highlighted the potential
importance of ambiguity. For instance, when Mark Gross and Ellen Do investigated
the aids used by designers they commented:

"We conjecture (based on observation and interviews) that designers prefer to use
paper and pencil because it supports ambiguity, imprecision and incremental
formalization of ideas as well as rapid exploration of alternatives." (Gross and Do,
1996, p 183)

The search for a systematic theory may be a goal for information systems research:
but it must not become the only focus of research. Good, rigorous and even scientific
theories for Information Systems can be developed without first developing a full
blown systematic theory. Similarly, research into software design has often been
hampered by the search for the philosopher's stone of a systematic theory of software
design (Berry, 2002; Jackson, 2001).

Information system research has a rich heritage of theories drawn from many different
disciplines and has stimulated many interesting debates between different areas.
Some may feel these debates have proved futile and others argue that they have not
yet yielded the promised fruits. Nonetheless, we must not abandon the need for
rigorous theories of information systems in favour of quest for an all encompassing
systematic one. To do so will only prevent the convergence of theory and practice: a
goal we all hope to achieve.

References
(Audi, 1995) Robert Audi (editor). The Cambridge Dictionary of Philosophy.
Cambridge University Press, 1995. ISBN 0-521-40224-7.

(Bacon and Fitzgerald, 2001) C. James Bacon and Brian Fitzgerald. A systemic
framework for the field of Information Systems. SIGMIS Database, 32(2): 46-67,
2001. DOI http://doi.acm.org/10.1145/506732.506738.

(Berry, 2002) Daniel M. Berry. The inevitable pain of software development,
including Extreme Programming, caused by requirements volatility. In Eberlein and
Leite (Eberlein and Leite, 2002).

(Checkland, 1981) Peter Checkland. Systems Thinking, Systems Practice. John
Wiley & Sons Ltd., 1981. ISBN 0-471-27911-0.

(Connell and Shafer, 1989) John L. Connell and Linda Brice Shafer. Structured
Rapid Prototyping: An Evolutionary Approach to Software Development. Yourdon
Press Computing Series. Yourdon Press, 1989. ISBN 0-13-853573-6.

(Davis et al, 1996) Gordon B. Davis, John T. Gorgone, J. Daniel Couger, David L.
Feinstein and Jr. Herbert E. Longenecker. IS'97: Model curriculum and guidelines for
undergraduate degree programs in Information Systems. SIGMIS Database, 28(1):
101-194, 1996. DOI http://doi.acm.org/10.1145/511965.512222.

(Desouza, 2003) Kevin C. Desouza. Facilitating tacit knowledge exchange.
Communications of the ACM, 46(6): 85-88, 2003. DOI
http://doi.acm.org/10.1145/777313.777317.

(Dijkstra, 2001) Edsger W. Dijkstra. The end of computing science?
Communications of the ACM, 44(3): 92, March 2001. DOI
http://doi.acm.org/10.1145/365181.365217.

(Duro et al, 1993) Paul Duro, Michael Greenhalgh, Trevor Griffiths, Kenneth
McLeish and Brendan O'Leary. Realism. In McLeish (McL1993), 1993. ISBN 0-
7475-0991-3.

(Eberlein and Leite, 2002) Armin Eberlein and Julio Cesar Sampaio Do Prado Leite
(editors). International Workshop on Time-Constrained Requirements Engineering
2002, Essen, Germany, September 2002. IEEE Press.

(Farhoomand and Drury, 1999) Ali Farhoomand and Don H. Drury. A
historiographical examination of Information Systems. Communications of the AIS,
1(5es): 4, 1999.

(Farhoomand, 1987) Ali F. Farhoomand. Scientific progress of management
Information Systems. SIGMIS Database, 18(4): 48-56, 1987. DOI
http://doi.acm.org/10.1145/1017816.1017821.

(Glass, 1996) Robert L. Glass. Through a glass, darkly: Methodologies: Bend to fit?
SIGMIS Database, 27(1): 14-16, 1996. DOI
http://doi.acm.org/10.1145/234611.234612.

(Graham, 1996) T. C. Nicholas Graham. Viewpoints supporting the development of
interactive software. In Joint Proceedings of the Second International Software
Architecture Workshop (ISAW-2) and International Workshop on Multiple
Perspectives in Software Development (Viewpoints '96) on SIGSOFT '96 Workshops,
pp. 263-267. ACM Press, 1996. ISBN 0-89791-867-3. DOI
http://doi.acm.org/10.1145/243327.243677.

(Gross and Do, 1996) Mark D. Gross and Ellen Yi-Luen Do. Ambiguous intentions:
A paper-like interface for creative design. In Proceedings of the 9th Annual ACM
Symposium on User Interface Software and Technology, pp. 183-192. ACM Press,
1996. ISBN 0-89791-798-7. DOI http://doi.acm.org/10.1145/237091.237119.

(Jack, 1993a) Andrew Jack. Empiricism. In McLeish (McL1993), 1993. ISBN 0-
7475-0991-3.

(Jack, 1993b) Andrew Jack. Rationalism. In McLeish (McL1993), 1993. ISBN 0-
7475-0991-3.

(Jackson, 2001) Michael Jackson. Problem Frames: Analysing and Structuring
Software Development Problems. ACM Press, 2001. ISBN 0-201-59627-X.

(Jay et al, 1982) F.C. Jay Jr, J. Daniel Couger and Gordon B. Davis. Information
Systems curriculum recommendations for the 80s: Undergraduate and graduate
programs. Communications of the ACM, 25(11): 781-805, 1982. DOI
http://doi.acm.org/10.1145/358690.358698.

(Kant, 1966) Immanuel Kant. Critique of Pure Reason. Anchor Books, 1966.

(Khazanchi and Munkvold, 2000) Deepak Khazanchi and Björn Erik Munkvold. Is
information system a science? An inquiry into the nature of the Information Systems
discipline. SIGMIS Database, 31(3): 24-42, 2000. DOI
http://doi.acm.org/10.1145/381823.381834.

(King and Kimble, 2004a) David King and Chris Kimble. Uncovering the
epistemological and ontological assumptions of software designers. In Proceedings of
the 9th Colloque de l'AIM, Evry, France, May 2004. AIM. (Available:
http://www.cs.york.ac.uk/mis/docs/AIM15.pdf)

(King and Kimble, 2004b) David King and Chris Kimble. Notions of equivalence in
software design. In Proceedings of the 9th Colloque de l'AIM, Evry, France, May
2004. AIM. (Available: http://www.cs.york.ac.uk/mis/docs/AIM16.pdf)

(McGuffee, 2000) James W. McGuffee. Defining Computer Science. SIGCSE Bull,
32(2): 74-76, 2000. DOI http://doi.acm.org/10.1145/355354.355379.

(McLeish, 1993) Kenneth McLeish (editor). Bloomsbury Guide to Human Thought.
Bloomsbury, 1993. ISBN 0-7475-0991-3.

(Meadow and Yuan, 1997) Charles T. Meadow and Beijing Yuan. Measuring the
impact of information: Defining the concepts. Information Processing &
Management, 33(6): 697-714, November 1997. DOI
http://dx.doi.org/10.1016/S0306-4573(97)00042-3.

(Oettinger, 1964) Anthony G. Oettinger. A bull's eye view of management and
engineering Information Systems. In Proceedings of the 1964 19th ACM National
Conference, pp. 21.1-21.14. ACM Press, 1964.

(Pancake, 1995) Cherri M. Pancake. The promise and the cost of object technology:
A five-year forecast. Communications of the ACM, 38(10): 32-49, 1995.

(Proulx et al, 1996) Viera K. Proulx, Richard Rasala and Harriet Fell. Foundations of
Computer Science: what are they and how do we teach them? In ITiCSE '96:
Proceedings of the 1st conference on integrating technology into Computer Science
education, pp. 42-48. ACM Press, 1996. ISBN 0-89791-844-4. DOI
http://doi.acm.org/10.1145/237466.237523.

(Reeves and Shipman, 1996) Brent N. Reeves and Frank Shipman. Tacit knowledge:
Icebergs in collaborative design. SIGOIS Bulletin, 17(3): 24-33, 1996. DOI
http://doi.acm.org/10.1145/242206.242212.

(Schwaber, 2002) Ken Schwaber. The impact of agile processes on requirements
engineering. In Eberlein and Leite (EL2002).

(Shipman and Marshall, 1999) Frank M. Shipman III and Catherine C. Marshall.
Formality considered harmful: Experiences, emerging themes and directions on the
use of formal representations in interactive systems. Comput. Supported Coop. Work,
8(4): 333-352, 1999. DOI http://dx.doi.org/10.1023/A:1008716330212.

(Simpson and Weiner, 1989) John Simpson and Edmund Weiner. The Oxford
English Dictionary. Oxford University Press, 2nd edition, 1989. ISBN 0-19-861186-
2.

(Sommerville and Sawyer, 1997) Ian Sommerville and Pete Sawyer, Viewpoints:
Principles, problems and a practical approach to requirements engineering. Annals of
Software Engineering, 3:101-130, 1997.

(Wieringa, 1998) Roel Wieringa. A survey of structured and object-oriented
software specification methods and techniques. ACM Computing Surveys, 30(4):
459-527, December 1998. DOI http://doi.acm.org/10.1145/299917.299919.

	Abstract
	Background
	Theory and Practice
	The Context of Information Systems
	Terminology

	Knowledge
	Epistemological Positions
	Epistemology in Software Design
	Defining Knowledge

	Information
	Ontological Positions
	Ontology in Software Design
	Defining Information

	Conclusion
	Problems for a Systematic Applied Theory
	Systematic or Rigorous?
	References

